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In recognition of the role of mangrove forests as natural barriers and bio-shields in protecting coastal population
and property in the aftermath of the 2004 Indian Ocean tsunami disaster, many Asian countries have launched
various projects to restore and conserve mangrove trees. The growth and vitality condition of mangroves may
be negatively influenced by various anthropogenic and natural disturbances and stresses, such as cold weather
events. This paper represents the first attempt to map the cold damage to mangroves in the tropical zone of
Southern China using high resolution multispectral satellite imagery. In this study, the spatial distribution of
severity level of cold damage to mangroves imposed by a rare blizzard in Southern China during early 2008
has been mapped and analyzed using IKONOS image. An object-oriented classification applied to the images
achieved an overall accuracy of 90.9% for classifying mangroves into three categories: undamaged, damaged,
and dead. Of the total 287.30 ha of mapped mangroves, approximately 51.1% were damaged or died due to the
cold stress of the blizzard. These results have been verified by more recent WorldView-II images. Furthermore,
we explored the associations between the cold damage severity level of mangroves and climate and landscape
factors, including elevation, surface slope, aspect, wind direction and velocity, wind shadow effect, and tree
height. The surface topographical variables are derived from the ASTER Global DEM. The analysis results suggest
that wind direction, terrain topography, and proximity to ocean are important local environmental factors
controlling the vulnerability of mangroves to cold damage. Most damaged mangroves were located near the
open sea, as a result of a possible edge exposure effect. The damage to the mangroves on the leeward side of a
hill was also minimal. Such knowledge of climate and landscape controls can offer insight on how to better
restore and protect the mangrove forest in the future.

© 2014 Elsevier Inc. All rights reserved.
1. Introduction

Mangrove forests consist of salt-tolerant tree species that grow in
the intertidal zone of tropical and subtropical coasts, particularly in
sheltered bays, lagoons, and estuaries (Blasco et al., 1998; Everitt &
Judd, 1989; Heumann, 2011; Wang et al., 2003). Mangroves are one of
the most productive ecosystems in the world and provide a variety of
ecological and societal goods and services. Mangrove vegetation itself
has been harvested directly as food supplements and timber products
(Green, Clark, Mumby, Edwards, & Ellis, 1998; Kuenzer, Bluemel,
Gebhardt, Quoc, & Dech, 2011). In addition, mangrove forests have
been also utilized by human beings for fishing, recreation, and aquacul-
ture. Their functions in absorbing pollution, purifying ocean water, and
maintaining coastal biodiversity have been widely recognized (Blasco,
phy, University of Cincinnati,
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Saenger, & Janodet, 1996; Heumann, 2011; Murray et al., 2003;
Sheridan & Hays, 2003). Inhabiting the interface between land and sea
at low latitudes, mangroves are adapted to many harsh environmental
conditions, such as being subjected to daily tidal changes in tempera-
ture, water and salt exposure, and varying degrees of anoxia (Alongi,
2008). Meanwhile, mangrove forests are among the most threatened
global ecosystems (Ellison & Farnsworth, 1996). Valiela, Bowen, and
York (2001) reported that a considerable portion of global mangrove
area has lost in the past two decades. Giri et al. (2008) estimated that
12% of tropical mangrove forests in the tsunami-impacted regions of
Indonesia, Malaysia, Thailand, Myanmar, Bangladesh, India, and Sri
Lanka have been destroyed during 1975–2005 due to agriculture
encroachment, aquaculture/shrimp farming, and urban development.

Following the devastating aftermath of the 2004 Indian Ocean
tsunami in Southeast Asia, there is growing empirical and field ob-
servational evidence that mangroves are particularly valuable in
protecting coastal population, settlements, and infrastructure from
tsunami attacks by reducing wave amplitude and energy (Alongi,
2008; Dahdouh-Guebas et al., 2005; Danielsen et al., 2005; Kathiresan
& Rajendran, 2005; Sanford, 2009; Tanaka, Sasaki, Mowjood, Jinadasa,
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& Homchuen, 2007). In recognition of the critical role of mangroves as
natural barriers and bio-shields against tropical storms and tsunamis,
many countries such as Indonesia, Thailand, and Sri Lanka have
launched various projects to replant and restore the degraded and
deforested mangrove areas in order to enhance the overall resilience
of coastal areas to natural hazards (Barbier, 2006; Harakunarak &
Aksornkoae, 2005). A great effort has been made in China to conserve
and restore mangroves, particularly in Guangdong and Hainan prov-
inces where fast-growing mangrove species have been introduced to
their deforested mangrove wetlands (Li et al., 1998; Ren et al., 2008,
2011; Xiao, Chen, & Xie, 2004).

Mangrove ecosystems are subject to a variety of natural and anthro-
pogenic disturbances, whichmay vary in their duration, frequency, size,
and intensity. Several researches have monitored the change or ex-
plored spatial pattern of mangrove forests affected by these distur-
bances, such as forest fire (Dahdouh-Guebas, Van Pottelbergh, Kairo,
Cannicci, & Koedam, 2004), hurricane (Ross et al., 2006), aquaculture
farming (Thu & Populus, 2007), and urban sprawl (Zhang et al., 2008),
etc. Mangrove tree species are fairly robust and highly tolerant
to water-logged saline soils in subtropical and tropical environments,
but are extremely vulnerable to cold temperatures (Stevens, Fox, &
Montague, 2006; Stuart, Choat, Martin, Holbrook, & Ball, 2007). In
subtropical areas, particularly in areas near the latitudinal limit of
mangrove distribution, frosts and freezes associated with severe cold
weather events may act as disturbances that devitalize, damage, or kill
mangrove trees. For example, mangroves in southern Florida, Texas,
and Louisiana have been periodically damaged or killed by freezes
(Everitt, Yang, Sriharan, & Judd, 2008; Ross et al., 2006, Ross, Ruiz, Sah,
& Hanan, 2009; Stevens et al., 2006; Stuart et al., 2007). In Florida,
average winter minimum temperature ranges from 8.2 to 9.5 °C, but
cold temperatures as severe as −10 °C are regular events, occurring
once every 8 years over the past century on average (Ross et al., 2009;
Stevens et al., 2006; Stuart et al., 2007). In southern Australia, man-
groves were often injured by mild frosts at least once a year (Stuart
et al., 2007). In subtropical China, freezing temperatures sporadically
occur, causing substantial frost damage to mangroves (Li, Liao, Guan,
Zheng, & Chen, 2009; Xiao et al., 2004). In early 2008, a blizzard swept
the coast of Southern China. It severely damaged a total of 7930 km2

of forests, including mangroves, in Guangdong Province (Chen, Wang,
Zhang, Huang, & Zhao, 2010; Li et al., 2009).

With increasing concern on extremely climate events, many studies
have focused on damaged mangrove forests affected by cold events
(Chen et al., 2010; Jiang &Huang, 2008; Ross et al., 2009). The landscape
structure and community composition of mangrove forests influenced
by cold events have been explored in these studies. However, current
studies about cold damages to mangrove forests mainly focused on
native mangrove forests. To date, the importance of introduced and
replanted mangrove forests has not been given sufficient attention.
These mangrove forests are more sensitive to the decline of tempera-
ture. To mitigate and prevent the cold damage to the replanted man-
groves in tropical and subtropical areas, an effective technique for
detecting and mapping the mangrove damage due to cold weather is
much needed. Such technique can also help develop an understanding
of local environmental factors controlling the vulnerability of the
mangroves to the cold damage.

In recent decades, remote sensing techniques have been widely ap-
plied in mangrove studies. Selective applications include mapping the
spatial extent of mangrove distribution (Gao, 1998; Green et al., 1998;
Held, Ticehurst, Lymburner, & Williams, 2003; Vaiphasa, Skidmore, &
de Boer, 2006), monitoring mangrove dynamic changes (Conchedda,
Durieux, & Mayaux, 2008; Kovacs, Wang, & Blanco-Correa, 2001; Liu,
Li, Shi, & Wang, 2008; Sulong, Mohd-Lokman, Mohd-Tarmizi, & Ismail,
2002; Vijay et al., 2005), estimating mangrove leaf area index (LAI)
(Kovacs, Flores-Verdugo, Wang, & Aspden, 2004), and calculating
mangrove biomass (Laliberte, Fredrickson, & Rango, 2007). Remote-
ly sensed data used in previous mangrove studies include aerial
photographs (Fromard, Vega, & Proisy, 2004; Sulong et al., 2002),
SPOT XS (Franklin, 1993; Gao, 1998; Pasqualini et al., 1999), Landsat
TM/ETM+ (Conchedda et al., 2008; Liu et al., 2008; Long & Skewes,
1996), SAR (Baghdadi & Oliveros, 2007; Kovacs, Vandenberg,
Wang, & Flores-Verdugo, 2008; Pasqualini et al., 1999), ASTER
(Vaiphasa et al., 2006), and IKONOS and QuickBird data (Everitt
et al., 2008; Laba et al., 2010; Wang, Sousa, Gong, & Biging, 2004). In
addition, LiDAR remote sensing has been used in recent years to study
the morphology, biomass and dynamics of the mangrove forests
(Zhang et al., 2008).

However, no research effort has been reported in using remote sens-
ing technique to detect and map the cold damage to mangrove forests,
especially in tropical areas. Until now, it is unknown ifmultispectral sat-
ellite image data contain sufficient information to assess the mangrove
damage due to cold weather. In addition, the relationship between en-
vironmental factors and pattern of damaged mangrove forests affected
by cold events at a landscape-scale has not gained sufficient attention,
especially for replanted or restored fast-growing mangrove forests. To
fill this research gap, we intend to explore the applicability of the high
resolution multispectral satellite images and object-oriented classifica-
tion method for detecting and mapping the severity level of mangrove
cold damage by the 2008 blizzard on Qi'ao Island of Guangdong Prov-
ince. Post-blizzard IKONOS multispectral (4 m) and panchromatic
(1 m) images are used in the study. Furthermore, this paper examines
possible associations between local environmental factors and the se-
verity of mangrove damage using a correspondence analysis method.
Environmental factors under investigation include climate variables
and biotic/abiotic landscape factors, which were derived from ASTER
Global Digital Elevation Model (GDEM). A better understanding of
local climate and landscape controls on mangrove could offer useful in-
sights on how to better conserve, protect andmanagemangrove forests
in the future.

2. Study area and data preparation

2.1. Study area

Qi'ao Island, with an area of about 24 km2, is located in the west of
the Pearl River Delta, near the City of Zhuhai in Southern China
(Fig. 1). The island spans between latitude 22°23′40″N–22°27′38″N,
and enjoys warm tropical and subtropical climate with abundant
rainfall. Its average annual precipitation ranges from 1700 mm to
2200 mm, and average annual temperature is between 22 °C and
23 °C. January is the coldest month, and the average temperature in
thismonth is 15.3 °C. The climate is very suitable for the growth ofman-
groves, and the island has been designated a Mangrove Nature Reserve
inGuangdong province, China. Previous studies (Jiang &Huang, 2008; Li
et al., 2009) indicate that the daily average temperature higher than
10 °C in the coldest month is required for growing of mangrove forest
in South China. Otherwise, mangrove trees will stop growing and
parts ofmangroveswill be damaged. If frosty or extremely coldweather
(temperature lower than 5 °C) lasts more than 2 days, mangrove
forests will be damaged (Li et al., 1998). The damaged mangrove inside
the Mangrove Nature Reserve on Qi'ao Island by the unusually cold
weather during the 2008 blizzard is the focus of this research.

TheMangroveNature Reserve is the largestwetland restoration pro-
ject in China. Fivemangrove species, including Kandelia candel, Acanthus
ilicifolius, Aegiceras corniculatum, Sonneratia caseolaris, and Sonneratia
apetala, were planted on the island. K. candel and A. corniculatum are lo-
cated in the upper intertidal near the embankment in the study area.
The other three mangrove species are planted in the mid-intertidal
and lower intertidal, showing zonal distribution. The mangrove species
also differ in tree height. S. caseolaris and S. apetala are the tallest
mangrove species in the Qi'ao Island, which height ranging from 4 m
to 12 m. A. ilicifolius, A. corniculatum, and K. candel average 1.5–2 m,
2.5–3.0 m, and 3–4 m in height, respectively. There also exists a



Fig. 1. Location of Qi'ao Island.
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mangrove nursery stand at the seaward fringe in the east part of the
study area. Most of young mangrove forests are S. caseolaris and
S. apetala with a height lower than 1.5 m. Compared with the two
introduced mangrove species in S. caseolaris and S. apetala, the native
mangrove species K. candel, Acanthus ilicifoliu, and A. corniculatumare
are more adaptive to local climate and less susceptible to extremely
cold weather (Laliberte et al., 2007; Li et al., 2009).

2.2. Data preparation

The remotely sensed data used in this research is high-resolution
IKONOS satellite image. It contains four multispectral bands (blue,
green, red, and near-infrared) with a 4-m resolution and a panchromat-
ic band with 1-m resolution. The image (about 4000 × 2500 pixels),
acquired from GeoEye, Inc., was captured on 27 February, 2008, two
weeks after the blizzard. The image is radiometrically and geometrically
corrected, and projected to the UTM zone 49 N coordinate system. A
subset of the image covering the Mangrove Nature Reserve is used in
this research (Fig. 1).

The ancillary data used in this research include ASTERGDEMand cli-
mate records. The ASTER GDEM is developed jointly by the U.S. National
Aeronautics and Space Administration (NASA) and Ministry of Econo-
my, Trade, and Industry (METI) of Japan, and covers land surfaces be-
tween 83°N and 83°S (Hayakawa, Oguchi, & Lin, 2008). The ASTER
GDEM has a spatial resolution of 1 arc-second (30 m) and is referenced
to the WGS84/EGM96 geoid. A subset of the ASTER GDEM is extracted
for our case study area, and resampled into a 4-m elevation grid to
match the resolution of IKONOSmultispectral images by using a bilinear
resampling method. The climate data, including wind speed, wind di-
rection and temperature, are obtained from Zhuhai Bureau ofMeteorol-
ogy. The dailymean temperature between January and February 2008 is
summarized in Fig. 2. The dailymean temperature from23 January to 14
February is consistently below 10 °C, which is 6.5 °C below normal.
From 31 January to 2 February, the daily mean temperature is below
5 °C, which causes most severe damage to the mangrove forest. The
dominant wind in this period blows from the East (Fig. 3). Although
the lowest temperature in Qi'ao Island during this period is below
0 °C, a few ice crystals were found by the sea near Qi'ao Island and
some regions to the immediate north of this island suffered frozen
rain and snow disasters during these two months.

Two field observations were carried out on March 15–16, 2008 and
November 19, 2008, to survey the damage level of mangrove forests.
Given the constraint on accessibility via boat, a total of 35 sampling
sites were selected to represent the study area. For each sampling site,
a GPS was used to record the precise location, and mangrove cold
damage severity level was observed within a 10 × 10 m2 plot of each
site. The locations of 220 removed deadmangrove plots were identified
on the image and confirmed by those who actually participated in
the removal, and these locations were later verified on more recent
WorldView-II images.

image of Fig.�1


Fig. 2. Daily mean temperatures between 1 January and 28 February 2008.
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3. Methodology

3.1. Damaged mangrove detection based on object-oriented classification
method

First, damagedmangroves are detected using high spatial resolution
remotely sensed data. The detection is based on an object-oriented clas-
sification method, which operates on image objects that are extracted
through image segmentation, rather than on individual pixels (Duro,
Franklin, & Dubé, 2012; Mitri & Gitas, 2004).

3.1.1. Spectral signature analysis of cold damage to mangroves
Three types of mangrove trees are observed after the blizzard

period: undamaged, damaged, and dead. Dead mangroves are those
with broken trunk or already died, damaged mangroves are those
with the loss of foliage or broken branches, and undamagedmangroves
refer to those surviving the blizzard without the significant defoliation.
To detect these three levels of damages due to cold weather in IKONOS
multispectral images, we need to understand the spectral responses of
the undamaged, damaged and deadmangroves in different wavelength
intervals. Training data are selected respectively for undamaged,
damaged, and dead mangroves based on field observations. The mean
DN value for each spectral band is used to characterize the spectral
property of mangroves with different cold damage severity levels. As
shown in Fig. 4a, the undamaged mangroves have stronger reflectance
Fig. 3.Wind rose diagram for wind direction during the blizzard.
than the damaged mangroves in all four spectral bands, particularly in
the near infrared band. The dead mangroves have stronger reflectance
in visible bands (blue, green, and red), but considerably lower reflec-
tance in the near infrared (NIR) band than undamaged mangroves.
The spectral curves of the mangroves of three damage severity levels
in Fig. 4a also show a strong contrast in the spectral slope between
red band and NIR band. To reduce the environmentally induced varia-
tions in the DN values of a single band and to take advantage of spectral
slopes, theNormalized Difference Vegetation Index (NDVI) is calculated
for these three types of mangroves. NDVI significantly enhances varia-
tions in the slopes of the spectral reflectance curves between red and
near infrared bands that may otherwise be masked by the pixel bright-
ness variations in each of the bands. As shown in Fig. 4b, the undamaged
mangroves have a high positive NDVI value due to its strong reflectance
inNIR band and absorption in the visible red band. The deadmangroves,
without green leave vegetation biomass, yield a negative NDVI value
due to a larger reflectance in the red band than in the NIR band. The
NDVI value for damaged mangroves is positive but small due to their
similar reflectance in both red andNIR bands. It is evident that NDVI sig-
nificantly enhances the discrimination of damaged anddeadmangroves
from undamaged ones.

3.1.2. Object-oriented classification
Traditional per-pixel classification method solely relies on the spec-

tral information of a single pixel, often resulting in noisy clutter classifi-
cation pattern (known as salt-and-pepper effect). The object-oriented
image classification method represents a different paradigm for image
analysis and understanding. This method first segments an image into
a set of homogenous objects, and then classifies those objects into
different categories. The basic spatial units in object-oriented image
classification are image objects rather than individual image pixels. In
addition to the spectral information, the object-oriented image classifi-
cation method is capable of utilizing semantic information (e.g., size,
shape, texture and contextual) of image objects and the spatial relation-
ships (e.g., topological relationship) between them, which are ignored
in the traditional per-pixel method. Previous studies have demonstrat-
ed that the object-oriented classificationmethod can avoid some draw-
backs of the traditional per-pixel classification and can often result in a
higher classification accuracy.

3.1.2.1. Image segmentation. Image segmentation is the first step in
object-oriented analysis, andmeaningful image objects can be extracted
in this process (Raši et al., 2011; Scepan, 2002). The image segmentation
in this research has been carried out using Definiens 7.0 (also known as
eCognition) software. The segmentation technique in Definiens is a
bottom-up region merging technique where smaller image objects are
merged into larger ones with the scale parameter controlling the
growth in heterogeneity between adjacent image objects. The region
merging function stops when image object growth exceeds the
threshold defined by the scale parameter — the maximum allowable

image of Fig.�2
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Fig. 4. Spectral and NDVI characteristics of cold damage to mangroves: a) spectral characteristics of cold damage to mangroves, b) NDVI characteristics of cold damage to mangroves.
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heterogeneity of image object (Benz, Hofmann,Willhauck, Lingenfelder,
& Heynen, 2004; Laliberte et al., 2007). Adjusting the scale parameter
influences the average object size (Baatz & Schape, 2000). A small
value of scale parameter results in a smaller average size of image ob-
jects. The color parameter, ranging from 0 to 1, determines the weight
of spectral (color) heterogeneity against shape heterogeneity in the
total image object heterogeneity. Previous studies suggest that more
meaningful objects are extracted with a higher weight for the color cri-
terion (Dronova, Gong, & Wang, 2011; Laliberte et al., 2004, 2007;
Mathieu, Aryal, & Chong, 2007). The shape heterogeneity is further de-
fined as a weighted sum of smoothness (the ratio of the border length
and the shortest possible border length of the bounding box of an
image object) and compactness (the ratio of the border length and the
square root of the number of object pixels). The compactness parameter
(0–1) gives theweight of the compactness versus the smoothness in the
shape heterogeneity (Walker & Briggs, 2007). A recursive process of
segmentation using different scale parameters results in a sequence of
nested image objects with a different average size, which can construct
a multi-level network of image objects. This network provides the basis
for further information extraction and classification (Benz et al., 2004;
Raši et al., 2011).
Table 1
Parameter of multi-scale segmentation.

Segmentation level Scale Color Shape Compactness Smoothness

First level 200 0.8 0.2 0.4 0.6
Second level 30 0.7 0.3 0.4 0.6
Third level 10 0.7 0.3 0.4 0.6
3.1.2.2. Damaged mangroves classification with decision tree method. In
this study, based on a series of tests by using an iterative “trial-and-
error” approach, we determined appropriate parameters and obtained
the three levels of segmentations. Equal weight is given to each spectral
band for defining the spectral (color) heterogeneity. Table 1 shows the
scale, color, shape and compactness parameter values used in our
multi-scale segmentation process.

A two-stage classification method is performed based on the three
scales of segmentations. As shown in Fig. 5, in the first stage the land
cover on Qi'ao Island is classified into four general categories:Mangrove
distributed area, sea, other forests, and other land-cover. The first stage
of classification is based on the first level of segmentations. With the
scale parameter of 200, the IKONOS image is segmented into relatively
large image objects. A number of typical image objects are visually
selected for each land cover type as training samples. Based on the train-
ing samples, a threshold value for each land cover type is determined in
terms of red and infrared bands, and NDVI. All image objects are then
classified into the four general land covers using these threshold values
as the classifier.

In the second stage, the mangrove distributed areas obtained in
the first stage are further classified into six sub-classes: undamaged
mangroves, damaged mangroves, dead mangroves, other vegetation,
mud, and tidal creek. The image objects classified as the mangrove
distributed area in the first stage are further segmented into smaller
image objects with a scale parameter of 30. Then, decision tree learning
method implemented in the data mining software tool See5 (Quinlan,
1990, 1999) is applied to classify these small image objects into the
six sub-classes.

The decision tree method is one of the most effective inductive ma-
chine learning techniques. Compared with traditional classification
methods such as the maximum likelihood classifier and the linear

image of Fig.�4


Fig. 5. Two-stage land cover type classification based on multi-scale segmentations.
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discriminant function classifier, the decision-treemethod has a number
of advantages (DeFries & Chan, 2000; Hansen, Dubayah, & Defries,
1996). As a nonparametric classifier, it makes no assumptions regarding
the statistical distribution and its parameters for input attribute data. It
is also robust with respect to nonlinear and noisy relations among input
attributes and class labels. The attributes for image objects generally do
not follow the normal distribution, and certain level of linear or non-
linear relations exists among these attributes and between attributes
and class labels. Therefore, for the image object classification, the
decision-tree method is a better choice than the commonly used
maximum-likelihood classification method, which assumes the normal
distribution of input attribute for each class.

The decision-tree method involves several classification steps: pre-
paring training data, selecting informative attributes, creating a decision
tree, generating decision rules, assigning class labels to image objects,
and evaluating classification accuracy. As an inductivemachine learning
technique, the decision tree method requires only a small set of good
examples to function as training data (Quinlan, 1999). A total of 135
image objects, 30 objects for each of mangrove types and 45 objects
for other three non-mangrove types, were surveyed in the field to
serve as training data for generating the classification rule set.

Attributes of each object, used in this study, were derived from the
five original bands of IKONOS image, including four multi-spectral
bands and one panchromatic band. We generated 24 features for each
object. These attributes were considered as initial input variables to
train and construct the decision tree:

● 10 spectral attributes: Mean values and standard deviation values of
blue, green, red, NIR, and panchromatic bands for each image object;

● 8 texture attributes: GLCM (Gray Level Co-occurrence Matrix) based
indicators and GLDV (Gray Level Difference Vector). GLCM is a tabu-
lation of howoften different combinations of gray levels of two pixels
at afixed relative position occur in an image (Laliberte et al., 2007; Yu
et al., 2006). The texture indicators generated fromGLCM includeho-
mogeneity, contrast, dissimilarity, entropy, standard deviation and
correlation. GLDV is the sum of the diagonals of the GLCM. GLDV en-
tropy and GLDV contrast are calculated as well.

● 5 geometric and shape attributes: area, length/width, shape index,
roundness and width of each image object;

● 1 vegetation attribute: NDVI value for each image object.

These attributes are considered as the initial candidate input vari-
ables, but not all the above attributes are actually used to construct
the decision-tree for the cold damaged mangrove classification. The
software tool See5 has a built-in winnowing function (Quinlan, 1999)
for optimally selecting most useful attributes that have a relatively
high discrimination capability. By using the winnowing function of
See5 software, we analyze the training dataset and select the following
attributes from the above list for generating classification rules: NDVI,
standard deviation values of green, mean red, mean NIR. The decision
tree is constructed in two steps. First, a large tree is grown to fit the
training data closely. Then, the tree is pruned by removing parts that
are predicted to have a relatively high error rate. This pruning process
corrects the over-fitting problem and reduces the size of the overall
tree, resulting in reliable and compact decision rules (Quinlan, 1996).
A pruning rate, a parameter used to address the trade-off between clas-
sification accuracy and decision tree size, is set to 25%. In order to obtain
a steady training accuracy, a 10-fold cross-validationmethod is selected
to analyze the training dataset because 10-fold cross-validation can use
all training data for both of training and validation. The binary decision
tree is then translated into a set of simple if–then rules. By applying if–
then rules, the image objects of the mangrove distributed area are
classified into the six sub-classes. The multi-scale segmentations and
classification process for extracting the cold damaged mangrove forests
are shown in Fig. 6. A total of 18 classification ruleswith a satisfied train-
ing accuracy of 89.3% are generated by using samples for decision tree
classification. For post-classification error checking and correction, the
classified image objects are further segmented into smaller units —

the lowest scale of image objects with a scale parameter of 10. All
these image objects are visually inspected, and mis-classified objects
are manually corrected at this lowest scale. A final classification map is
created.

3.1.2.3. Accuracy assessment of image classification. Based on a field sur-
vey sample, a contingency error matrix is created to assess the accuracy
of the classification result from the decision tree learning method. A
stratified random sampling approach was adopted to select the sample
objects from the sample map drew during the second stage of field
investigation (Congalton, 1988; Congalton & Mead, 1986; Nishii &
Tanaka, 1999). A total of 177 sample objects were selected and used
for accuracy assessment from all of 220 objects in the sample map.
The selected sample objects mirror the overall distribution of different
land cover categories. The accuracy assessments are carried out using
Definiens 7.0 software, based on the error matrix from the field
reference data.

3.2. Factors analysis on the vulnerability of mangroves to cold damage

Furthermore, the assumption that local environmental factors may
change climate conditions and hence affect the severity level of cold
damage tomangroves is consistentwith spatial pattern of themangrove
cold damage index (MCDI) and correspondence analysis result as well
as our field survey results.

3.2.1. Environmental factor definition and analysis
Environmental factors under investigation include climate variables

(air temperature, wind direction and velocity) and local landscape var-
iables (elevation, surface slope, and tree height). Mangrove forests are
located in an open and flat area in the northwest of Qi'ao Island. The
cold damage to mangroves during the blizzard could be caused by
cold wind/air. In this paper, the leeward side distance to the hill ridges
(Fig. 7b) is used as a proxy variable for the combined effect of wind di-
rection and local landscape on the air temperature and wind velocity.
The distance to the ocean water (Fig. 7a) is also used as a proxy variable
for the possible edge effect near the coastline. This distance variable
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Fig. 6.Multi-scale segmentations and object-oriented classification results.
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could also represent the possible effect of the age of mangroves, asmost
of the mangrove forests in Qi'ao Island are replanted and restored after
1999, from inland to the coastline. In addition,mangroveswith different
tree heights suffered different damages under the extreme cold weath-
er. The tree height data of mangrove forests obtained from field survey
and ASTER GDEM are used as the third variable for the effect of tree
structure.

The freezing temperature of cold air can directly injure or kill the
foliage of mangroves and the strong cold wind can break the branches
or trunks of mangroves. The temperature and wind velocity during
the blizzard at the regional scale determine the overall severity of cold
damage to mangroves. The daily minimum temperature during the
blizzard is 4.3 °C and wind velocity is 2.5 m/s. The coupled effect of
wind direction and terrain topography influences the spatial variation
of temperature and wind velocity at the local scale, which may cause
the spatial difference in severity level of cold damage to mangroves.
As shown by the wind rose diagram in Fig. 2, the prevailing wind direc-
tion during the blizzard is from the East. Fig. 8 shows the topography of
Qi'ao Island. Hills are distributed along the northeast coast of the island,
and the hill peaks have an elevation of about 100 m. The hills create
windbreaks and shield land behind them from the wind (Fig. 7),
which protects the mangrove forest on the leeward side. This shielding
effect decays with the increase of distance to the ridges of the hills.
Using the ASTER GDEM, the surface slope and aspect were calculated
and then the ridgeline of the hills was extracted. A series of buffer
zones with 100 m interval was created in the leeward side of the hills
to represent the distance to the ridgeline (Fig. 7b). The buffer zones
within 500mdistance to the ridgeline are not considered since noman-
grove trees are distributedwithin this range. It is expected that a shorter
distance to the ridge line, the greater protection of hills to mangroves
from the cold east wind.

3.2.2. Mangrove cold damage index (MCDI)
Both field observation and remote sensing images show spatial

variation of the mangrove damage level. Those along the coast appear
to be damaged most severely, while mangroves in the inland area are
less damaged. The mangroves close to the hill ridges also appear less
damaged by the blizzard. Amangrove cold damage index (MCDI) is cre-
ated for quantitative analysis of climate and landscape effects through
the two proxy distance variables. The index represents the cold damage
intensity of mangroves in each distance buffer zone. A higher MCDI
value indicates more severe damage to the mangroves.
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Fig. 7. Two proxy environmental variables for climate and landscape factors: a) distance to coastal water; b) distance to ridgeline of hills in the leeward side.
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For each distance buffer zone, we calculate MCDI based on the
remote sensing classification using the following equation:

MCDI ¼ 1 � Ad1 þ 0:5 � Ad2ð Þ= Ad1 þ Ad2 þ Ahð Þ ð1Þ

where Ad1 is the area ratio of deadmangroves in a distance buffer zone;
and similarly, Ad2 and Ah are the areal percentage of damaged and un-
damaged mangroves in a distance buffer zone, respectively. Obviously,
the three percentages satisfy the following relation:

Ad1 þ Ad2 þ Ah ¼ Total area: ð2Þ

3.2.3. Correspondence analysis
The correspondence analysis technique is employed to further

examine the statistical association between severity level of cold
damage and the climate and landscape and biological factors, which in-
clude leeward side distance to the hill ridges, distance to the coastal
water and tree height. The two distance variables are transformed into
discrete category variables using the buffering operation. The leeward
side distance to the hill ridges is transformed to a category variable
with 17 discrete buffer zones from 500 m to 2100 m with an interval
of 100 m. Similarly, the distance to the coastal water is converted into
a category variable with 15 discrete buffer zones from 0 to 1500 m
with an interval of 100 m. The tree height data of mangrove forests be-
tween 0 and 15 m is converted into a category variable with 15 zones
with an interval of 1 m. The variable for the cold damage severity level
of mangroves is represented by the three discrete categories from
above classification: undamaged, damaged, and dead.

Correspondence analysis is a method of factoring categorical
variables and displaying them in a property space, which maps their
association in two or more dimensions. The multivariate nature of
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Fig. 8. Terrain and wind direction analysis of the Qi'ao Island.
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correspondence analysis can reveal relationships that would not be de-
tected in a series of pair-wise comparisons of variables. Correspondence
analysis analyzes two-way contingency tables containing some mea-
sure of correspondence between the categories of two discrete variables
(rows and columns of the table). Correspondence analysis can uncover
and describe systematic relations and associations between variables in
large contingency tables when there are no (or a rather incomplete) a
priori expectations as to the nature of those relations (Hill, 1974; Ross,
Meeder, Sah, Ruiz, & Telesnicki, 2000; van der Heijden & de Leeuw,
1985). Correspondence analysis simultaneously considers multiple
categorical variables. Its graphical display of row and column points in
bi-plots can help reveal structural relationships among the variable
categories and objects.

In this study, the correspondence analysis implemented in SPSS
software is used to explore the association of the mangrove cold
damage severity level variable with the leeward side distance to ridge,
the distance to ocean water and the tree height. The correspondence
analysis starts with the construction of contingency tables between
two category variables. Using a stratified random sampling method, a
total of 2000 samples are selected from different cold damage severity
Table 2
Error matrix of object-oriented classification of cold damaged mangrove.

TC OV DM IM

TC 24 0 0 0
OV 0 20 0 0
DM 0 1 21 3
IM 0 0 3 29
VM 0 1 0 1
M 0 0 0 0
Total 24 22 24 33
Producer's accuracy 100% 90.9% 87.5% 87.

Total accuracy = 90.96%; Kappa statistics = 0.89.
Note: DM = dead mangrove; IM = damaged mangrove; VM = undamaged mangrove; TC =
categories of mangroves based on the area ratio of damagedmangroves
and the total mangrove forests to construct the contingency tables.

4. Results

4.1. Classification results and accuracy assessment

An error contingency matrix (Table 2) depicts the land cover classi-
fication result versus the field-observed land cover type. The diagonal
cells indicate a match between classification and observation. If the
spectral signals are used as sole input variables, the classification
accuracy is about 72%. Due to the defoliation and broken braches,
dead mangrove forests cannot be well discriminated from bare muddy
ground. The inclusion of NDVI as an additional input variable can effec-
tively improve the classification accuracy, which clearly distinguishes
dead mangroves from muddy ground. The overall accuracy is 90.96%
and Kappa statistics is 0.89. It is also revealed that the shape and texture
attributes are not helpful in improving classification accuracy. This is
probably because all objects of cold damaged mangrove patch have
similar size, area, and shape characteristics.
HM M Total User's accuracy

0 1 25 96.0%
0 1 21 95.2%
0 0 25 84.0%
5 0 37 78.4%

39 0 41 95.1%
0 28 28 100%

44 30 177
9% 88.6% 93.3%

tide creek; OV = other vegetation; M = mud.
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Table 3
Accuracy comparison for classifications using different sets of attributes.

Attributes Accuracy Kappa statistics

Spectral 72.1% 0.676
Shape 57.7% 0.465
Texture 51.9% 0.391
NDVI 55.5% 0.411
Spectral + NDVI 80.7% 0.763
Spectral + shape 71.9% 0.673
Spectral + texture 69.6% 0.643
All attributes 83.5% 0.792
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The user's accuracy, detailing errors of commission, ranges between
78.4% and 100%, and the producer's accuracy, detailing errors of omis-
sion, varies between 87.5% and 100%. Misclassification is mainly related
to misidentifying the different types of cold damagedmangrove forests.
The high overall classification accuracy indicates that high resolution
multi-spectral IKONOS imagery contains sufficient spectral and spatial
information for detecting the cold damage to mangroves and the
object-oriented method with decision tree learning algorithms is suit-
able for classifying severity level ofmangrove cold damage and different
types of land covers.

The overall classification accuracy and Kappa values for different
combination of input variables are summarized in Table 3.

As shown in Table 3, the spectral information ismuchmore important
for the mangrove damage classification than texture and shape informa-
tion. The use of spectral attributes alone can achieve a classification
accuracy of 72.1%. The addition of explicit vegetation attribute NDVI
into spectral attributes results in a significant increase in classification ac-
curacy by 8.6%. However, the inclusion of texture or shape attributes does
not improve the classification accuracy.When all 24 attributes are blindly
included, the classification accuracy is 83.5%, which is worse than the
Fig. 9. Spatial pattern of MCDI: a) MCDI varies with distance to c
classification accuracy (90.96%) achieved by using the five attributes
selected by See5 winnowing function. This indicates that the selected at-
tributes and the corresponding classification rule set from our decision
tree learning method are efficient and effective for cold damaged man-
grove classification.

The statistical analysis of thismap shows that the area of undamaged
mangrove forests, damaged mangrove forests, and dead mangrove for-
ests is 140.61 ha, 71.97 ha, and 74.81 ha, respectively. Approximately
51.1% of mangrove forests in Qi'ao Island were either damaged or died
as a result of the 2008 blizzard. This implies that remote sensing and
geospatial technologies can provide the local management agency
with valuable and timely information for the damage assessment and
recovery of mangrove forests.

4.2. Spatial variation pattern of mangrove cold damage index

As shown in Fig. 9a, there is an overall pattern that the cold damage
level (MCDI) decreases with the distance to coastal water. Namely, the
mangroves closer to cold ocean water tend to be more seriously dam-
aged. However, this pattern and tendency does not hold within 200 m
coastal zone.Mangrove trees in the 200 meter buffer zone have suffered
more serious cold damage than those in the 100m buffer zone. Accord-
ing to field investigation, mangroves in the 200 meter buffer zone are
newly planted, and thesemangrove trees are little andmore vulnerable
to the cold compared with the established old mangrove trees in the
100 m buffer zone. In general, the mangroves planted close to coast
are much shorter than the mangroves planted inland because taller
mangroves cannot survive in the shore area due to the strong wind
and tide. As shown in Fig. 9b, the hills protected in certain degree the
mangroves in the leeward side within 1500 m of the ridgeline, and
the MCDI is relatively small within this range. The wind shadow effect
of the hills starts to fade rapidly beyond 1500 m from the ridgeline,
oastal water; b) MCDI varies with distance to hill ridgeline.
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Table 4
Contingency table of distance buffer to hill ridgeline.

Distance buffer to hill ridgeline/m Mangrove types

Undamaged Damaged Dead

500 26 4 5
600 49 12 5
700 39 22 8
800 64 16 6
900 59 15 0
1000 57 17 3
1100 69 20 1
1200 64 21 2
1300 45 25 4
1400 63 29 6
1500 53 11 9
1600 37 18 10
1700 26 43 17
1800 21 47 23
1900 36 28 12
2000 21 18 44
2100 7 24 36

Table 5
Contingency table of distance buffer to coastal water.

Distance buffer to coastal water/m Mangrove types

Undamaged Damaged Dead

100 106 8 78
200 82 45 148
300 89 65 103
400 77 57 40
500 53 54 41
600 64 43 52
700 78 36 40
800 88 62 9
900 64 45 5
1000 59 46 3
1100 63 10 3
1200 44 18 0
1300 45 8 0
1400 23 2 0
1500 17 0 0
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and theMCDI starts to increasewith the distance to the hill ridges. From
our field investigation, we observed that a large area of mangrove for-
ests in the far northwest of the hill were dead or damaged. The area of
these dead and damaged mangrove forests decreases from the 500 m
buffer to the 900 m buffer, so does the MCDI. From the 900 m buffer
to the 1500 m buffer, the MCDI increases slightly due to the gradual
weakening of the wind shadow effect.
Table 6
Contingency table of tree height.

Tree height/m Mangrove types

Undamaged Damaged Dead

0 33 39 54
1 28 43 55
2 54 59 13
3 46 61 18
4 59 55 11
5 58 63 5
6 93 30 3
7 75 44 6
8 100 25 0
9 73 45 8
10 75 48 3
11 75 50 0
12 51 46 29
13 38 45 43
14 40 26 59
15 20 23 83

Fig. 10. Graphical displays of the results of the correspondence analysis of two spatial
factors and types of cold damaged mangroves: a) distance to coastal water, b) distance
to hill ridgeline, c) tree height.
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4.3. Statistical association between severity levels of cold damage and
influence factors

The resulting contingency tables between the category variable of
cold damage severity level and the category variable of the distance to
ocean, the leeward side distance to ridge and the tree height are
shown in Tables 4, 5 and 6 respectively. From the two-way contingency
tables, the correspondence analysis computes category profiles (relative
frequency) and masses (marginal proportions), the Chi-square dis-
tances between these points, and the inertia (variance) of profile points
that measures the extent to which profile points are spread around the
centroid (the mean profile). Next, dimensionality reduction was con-
ducted by first computing the variance/covariance matrix of variables
and then selecting new axes/factors that explainmaximum inertia (var-
iance) of cloud points, as in principal component analysis. The final
analysis results of correspondence analysis are presented graphically
as bi-plots (Fig. 10), which show the configurations of points in projec-
tion planes, formed by the first two main axes/factors (Greenacre,
1992). The bi-plots visualize the associations between categories of
two variables and facilitate interpretation. Categories with similar
distributions are represented as points that are close in space (distinct
clusters), and categories that have very dissimilar distributions will be
positioned far apart as scattered points.

From Fig. 10a, it is clear that the undamaged mangroves are
clustered in the inland (including 1100 m, 1200 m, 1300 m, 1400 m,
and 1500 m buffer zones), damaged mangroves with mid-range
distance buffer zones to ocean water (500 m, 600 m, 700 m, 800 m,
900 m, 1000 m buffer zones), and dead mangroves near the coastline
(100 m, 200 m, and 300 m). This result suggests that the cold damage
severity of mangrove forests is associated with proximity to ocean,
possibly due to a combination of edge effect and age of mangroves.

Associations between mangrove cold damage severity and the
leeward side distance to hill ridges are displayed in Fig. 10b. The undam-
aged mangroves that are not damaged by the blizzard tend to be
clustered close to the hill ridges (500 m, …, 1500 m), where are
effectively protected from cold damage by thewind shadow effect of to-
pographical hills. The damaged mangroves are clustered with interme-
diate distance buffer zones to the ridges (1600 m, 1700 m, 1800 m,
1900 m), which indicate that the wind shadow effect of hills is signifi-
cantly reduced after cold air/wind crosses the hills by 1.5 km. The
dead mangroves are clustered far away from the hill ridges (2000 m
and 2100 m), which suggests that the wind shadow effect of the hills
cannot reach the areas farther than 2 km from the hill ridges.
Fig. 11. WorldView-II image of the Mangrove Nature Reserve dated November 11, 2010, an
Tree height is closely associated with the cold damage (Fig. 10c).
Dead mangroves are either the tallest (14–15 m) or the shortest
(below 1 m). The tallest mangroves may be damaged by the strong
cold wind, while the shortest by the cold temperature. This finding
is consistent with that of Ross et al. (2009). They reported that vari-
able tree height may influence cold damage and that patches of com-
paratively short trees may experience more damage, especially if
surrounded by taller trees, which facilitates the pooling of cold air in
nearby short trees. Damaged mangroves tend to be 2–5 m or 12–13 m
in height, which can be explained by reasons similar to those of dead
mangroves. Undamaged mangroves tend to have moderate height,
ranging from 6 m to 11 m.

5. Discussion

This study has adopted an object-oriented method for discriminat-
ing different land cover types and mangrove forests of different
cold damage levels from multi-spectral IKONOS imagery. The object-
oriented classification is based on the use of spectral and vegetation
attribute of image objects derived from multi-scale segmentations of
IKONOS imagery. The case study in Qi'ao Island, South China demon-
strates that the use of object-oriented method with decision tree learn-
ing algorithms on very high resolution IKONOS satellite images is
effective in mapping spatial distribution of cold damage to mangrove
forests.

Despite the overall high classification accuracy, the discrimination of
damaged mangroves from undamaged and dead mangrove forests
is still challenging with IKONOS multi-spectral imagery. As shown
in Table 3, some damaged mangrove stands (image objects) were
misclassified into undamaged or deadmangroves. The further improve-
ment for the classification of mangroves of different cold damage levels
may need satellite imagery that has higher spatial resolution and more
spectral bands than IKONOS imagery, such as airborne hyperspectral
imagery, and WorldView-2, which has 8 multi-spectral bands with a
2-m spatial resolution and a panchromatic band with a 0.5-m spatial
resolution.

All dead mangroves were removed during the summer of 2008. The
vegetation previously under the dead mangroves has grown rapidly. A
WorldView-II image (Fig. 11a) captured on November 11 of 2010
shows the distribution of the understory, which mainly includes
A. ilicifolius, Spartina alterniflora and Acrostichum aureum (Fig. 11b).
The higher number of spectral bands in WorldView-II images allows
for finer spectral classification than those of IKONOS images. The
d the classification of the fast-growing understory after the removal of dead mangrove.
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WorldView-II classification of the understory verifies the accuracy of
the IKONOS classification of dead mangroves.

Overall many of the aforementioned findings are consistentwith the
literature (Ross et al., 2006, Ross et al., 2009). In addition, the study has
discovered environmental and landscape factors that helpmitigate cold
damage to mangroves.

6. Conclusion

The ecological and societal values of mangrove forests, particularly
their critical role as natural barriers and bioshields against hurricane
and tsunami hazards, have been increasingly recognized. Many coun-
tries have launched various projects to restore and conserve mangrove
wetlands to enhance the coastal resilience to natural hazards. However,
the cold weather events often impose threat to the restoration and con-
servation efforts, particularly in subtropical and tropical coasts. This
study represents the first research attempt to study the suitability of re-
mote sensing technique for the assessment of mangrove cold damage.

Through a case study ofmangroves inQi'ao Island, located in tropical
Southern China, the research has demonstrated that the high resolution
multispectral satellite data such as IKONOS images contain sufficient
information for detecting and mapping the damaged mangroves. The
combined use of spectral, and NDVI variables with object-oriented clas-
sificationmethod can achieve accurate discrimination of themangroves
with different severity levels of cold damage.

MCDI and correspondence analysis suggest that local terrain topog-
raphy, wind direction and proximity to ocean water are important fac-
tors controlling the spatial distribution of mangrove cold damage. Tree
height of mangroves is another important factor affecting mangrove
forests under extreme cold weather. The leeward side of hills and
mountains provides milder climate protecting mangroves from cold
damage, and the mangroves near coast are more vulnerable due to the
edge effects. Tominimize possible cold damage and increase the surviv-
al rate, one can identify the leeward side of hills and mountains as
potential rehabilitation sites for replanting mangroves or create artifi-
cial terrain in the upstream location of prevailingwind to protect down-
stream mangroves. One could also select and plant cold-resistance
species and relatively large seedlings in the area nearby ocean to in-
crease the root tolerance to cold water. In the events of the predicted
cold weather, conservation and protection priorities should be given
to mangroves located in the windward side and in the open flat coastal
plain near ocean water. In sum, the study suggests that the knowledge
and information about local climate and landscape controls can offer
some useful insights on how to better conserve, protect and manage
the mangrove forests in the future.
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