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Abstract—Linear spectral unmixing aims at estimating the
number of pure spectral substances, also called endmembers, their
spectral signatures, and their abundance fractions in remotely
sensed hyperspectral images. This paper describes a method for
unsupervised hyperspectral unmixing called minimum volume
simplex analysis (MVSA) and introduces a new computationally
efficient implementation. MVSA approaches hyperspectral un-
mixing by fitting a minimum volume simplex to the hyperspec-
tral data, constraining the abundance fractions to belong to the
probability simplex. The resulting optimization problem, which is
computationally complex, is solved in this paper by implementing
a sequence of quadratically constrained subproblems using the
interior point method, which is particularly effective from the
computational viewpoint. The proposed implementation (available
online: www.lx.it.pt/%7ejun/DemoMVSA.zip) is shown to exhibit
state-of-the-art performance not only in terms of unmixing accu-
racy, particularly in nonpure pixel scenarios, but also in terms
of computational performance. Our experiments have been con-
ducted using both synthetic and real data sets. An important
assumption of MVSA is that pure pixels may not be present in the
hyperspectral data, thus addressing a common situation in real
scenarios which are often dominated by highly mixed pixels. In
our experiments, we observe that MVSA yields competitive perfor-
mance when compared with other available algorithms that work
under the nonpure pixel regime. Our results also demonstrate
that MVSA is well suited to problems involving a high number of
endmembers (i.e., complex scenes) and also for problems involving
a high number of pixels (i.e., large scenes).

Index Terms—Endmember identification, hyperspectral imag-
ing, interior point method, minimum volume simplex analysis
(MVSA), spectral unmixing.

I. INTRODUCTION

HYPERSPECTRAL unmixing is a source separation prob-
lem which focuses on the decomposition of the pixel

spectra into a set of constituent spectra, also termed endmem-

Manuscript received August 9, 2014; revised January 30, 2015; accepted
March 23, 2015. This work was supported by the Portuguese Science and
Technology Foundation, Projects UID/EEA/50008/2013 and PTDC/EEI-PRO/
1470/2012.

J. Li and X. Li are with the Guangdong Provincial Key Laboratory
of Urbanization and Geo-simulation, School of Geography and Planning,
Sun Yat-sen University, Guangzhou 510275, China.

A. Agathos and D. Zaharie are with the Computer Science Department, West
University of Timisoara, 300223 Timisoara, Romania.

J. M. Bioucas-Dias is with the Instituto de Telecomunicações, Instituto
Superior Técnico, Universidade de Lisboa, 1649-004 Lisboa, Portugal.

A. Plaza is with the Hyperspectral Computing Laboratory Department of
Technology of Computers and Communications, Escuela Politécnica, Univer-
sity of Extremadura, 10071 Cáceres, Spain.

Color versions of one or more of the figures in this paper are available online
at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TGRS.2015.2417162

bers, and their corresponding fractional abundances present in
the pixel [1]. Compared with the canonical source separation
scenario, the sources in hyperspectral unmixing are statistically
dependent, and the observed mixtures are either linear or non-
linear in nature [2]. The linear mixing model holds when the
mixing scale is macroscopic [3]–[6]. In this case, we assume
that the acquired spectral vectors are a linear combination of
the endmember signatures present in the scene, weighted by
their respective fractional abundances. In turn, nonlinear mix-
ing holds when the light suffers multiple scattering involving
different materials [7]–[10]. This model assumes that inci-
dent solar radiation is scattered by the scene through multiple
bounces involving several endmembers [7]. In practice, nonlin-
ear mixtures happen very often in real scenarios, although linear
models can approximate these complex mixtures with a good
degree of confidence [11]. These characteristics, together with
the high dimensionality of hyperspectral vectors and the large
number of pixels present in real scenes, place the unmixing
of hyperspectral mixtures beyond the reach of most source
separation algorithms, thus fostering active research in the field
(see [1] for a recent overview of advances in this area).

Linear unmixing techniques can be classified into statistical
and geometrical based. The former category addresses spectral
unmixing as an inference problem, often formulated under the
Bayesian framework, whereas the latter category exploits the
fact that the spectral vectors (under the linear mixing model)
lie in a simplex whose vertices correspond to the endmem-
bers. Here, we focus on the geometrical approach to spectral
unmixing (additional details about the statistical approach can
be found in [1] and references therein). It should be noted that
the overview does not intend to be exhaustive, but to introduce
some of the most relevant methods that will be compared
with our proposed approach. For instance, important recent
techniques such as sparse unmixing [12] or support vector
machine-based unmixing [13] are not described in detail.

The geometrical approach exploits the fact that, under the
linear mixing model, hyperspectral vectors belong to a simplex
set whose vertices correspond to the endmembers. Therefore,
finding the endmembers is equivalent to identifying the ver-
tices of the aforementioned simplex. The main research lines
presented in recent years under this framework belong to two
different groups. Pure pixel-based algorithms assume that the
scene contains at least one pure pixel per endmember [1]. More
recently, several algorithms dropped this assumption by assum-
ing that no pure pixels may be present in real hyperspectral
scenes [14]. In the following, we outline these two approaches.
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A. Spectral Unmixing With the Pure Pixel Assumption

If there exists at least one pure pixel per endmember (i.e.,
a pixel containing just one material), then unmixing amounts
to finding the spectral vectors in the data set corresponding
to the vertices of the data simplex. Some popular algorithms
implemented using this assumption are the vertex component
analysis (VCA) [15] and N-FINDR [16], among many others
(see [1], [11], and [17] for more extensive overviews). Among
representative algorithms in this category, maximum volume
simplex-based techniques like VCA or N-FINDR are based
on the fact that, in p spectral dimensions, the p-dimensional
volume defined by a simplex formed by the purest pixels is
larger than any other volume defined by any other combination
of pixels. The VCA algorithm iteratively projects data onto
a direction orthogonal to the subspace spanned by the end-
members already determined. The new endmember signature
corresponds to the extreme of the projection. The algorithm
iterates until all endmembers are exhausted [15]. The N-FINDR
algorithm finds the set of pixels defining the largest volume
by inflating a simplex inside the data. This strategy is opposite
to that explored by minimum volume algorithms (addressed in
the next section), which instead minimize the volume of the
simplex that encloses all pixel observations [18], [19].

B. Spectral Unmixing Without the Pure Pixel Assumption

If the pure pixel assumption is not fulfilled (this is a more
realistic scenario since hyperspectral data are often dominated
by highly mixed pixels [1], [2]), the unmixing process is a
rather challenging task. This is because the endmembers, or
at least some of them, are not included in the data set. In
his seminal work Craig [18] presented this idea which has
also been explored by other authors providing different al-
gorithms for minimizing the same objective function such as
the minimum-volume enclosing simplex (MVES) [19]. The
robust MVES [20] and the simplex identification via split
augmented Lagrangian (SISAL) algorithm [21] are variants of
these. Other techniques minimize a regularized least squares
fit of the data, including the iterative constrained endmembers
(ICEs) [22], the sparsity-promoting ICE [23], and the minimum
volume constrained nonnegative matrix factorization (MVC-
NMF) [24]. MVC-NMF uses constrained NMF to decompose
mixed pixels in multispectral and hyperspectral remote sens-
ing images. Specifically, MVC-NMF adopts a volume-based
constraint together with NMF for the decomposition of mixed
pixels. In this regard, the main difference between ICE and
MVC-NMF is the measure of the simplex that they use as
a regularizer [25]. Craig[18] and MVES find a simplex by
minimizing the simplex volume subject to the constraint that
all the dimensionally-reduced pixels are enclosed by the sim-
plex. The MVES algorithm is based on a cyclic minimization
procedure, in which a sequence of linear programs is solved.
SISAL implements a robust version of the minimum volume
concept which allows violations of the abundance nonnegativity
constraint.

At this point, it is important to emphasize that the main dif-
ference between the seminal algorithm introduced by Craig [18]

and other strategies like MVES or SISAL lies in the solution of
the optimization problem. It has been found that the solutions
provided by greedy solvers are strongly dependent on the ini-
tialization [1]. This handicap was circumvented by MVES and
SISAL by reformulating the optimization problem with respect
to the inverse of the matrix of estimated endmembers [25]. In
this paper, we present a new computationally efficient imple-
mentation of the minimum volume simplex analysis (MVSA)
algorithm introduced in [26] that uses sequential quadratic
programming (SQP) to solve the optimization problem. The
optimization process adopted by the algorithm will be shown
to be faster than the following: 1) the original solver introduced
in [26]; 2) MVES which solves exactly the same optimization;
and 3) MVC-NMF.

C. Proposed Approach

In this paper, we specifically focus on the minimum volume-
based approach for hyperspectral unmixing and further develop
a computationally efficient version of the MVSA method [26].
The MVSA algorithm fits a minimum volume simplex to the
hyperspectral data by constraining the abundance fractions to
belong to the probability simplex. The resulting optimization
problem, which is computationally very complex, is solved
in this paper by implementing a sequence of quadratically
constrained subproblems using the interior point method [27],
thus providing a completely new perspective on the MVSA
method based on an efficient implementation that allows, for
the first time in the literature, a detailed comparison of its
performance with that of other standard methods based on
minimum volume concepts and the nonpure pixel assumption.
The main contributions and differences of the proposed work
with regard to [26] can be summarized as follows.

1) An interior point algorithm is used to solve the opti-
mization problem, whereas in [26], an SQP approach
was used. The proposed optimization greatly reduces the
computational complexity of the algorithm and allows
for its practical utilization with moderately large and
complex hyperspectral data sets.

2) An implementation of the new algorithm is available in
the form of an online demonstration.1 This optimized
demonstration includes the Matlab source code of the
algorithm, together with different analysis examples in-
cluding difficult cases with a large number of samples,
large number of endmembers, etc. The availability of the
source code will allow interested readers to reproduce our
results and to conduct their own experiments.

The remainder of this paper is organized as follows.
Section II describes the fundamentals of the MVSA algorithm.
Section III describes our proposed implementation, with par-
ticular emphasis on the optimizations conducted. Section IV
presents a detailed experimental evaluation of the algorithm
using synthetic data sets. In Section V, we use a subset of
the popular Airborne Visible/Infrared Imaging Spectrometer

1Available from http://www.lx.it.pt/%7ejun/DemoMVSA.zip.
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Fig. 1. Illustration of the simplex set C for p = 3. C is the convex hull of the
columns of M. Green circles represent spectral vectors. Red circles represent
vertices of the simplex and correspond to the endmembers.

(AVIRIS) Cuprite data for evaluation. Section VI summarizes
this paper and hints at plausible future research lines.

II. MVSA

Let Y ≡ [y1, . . . ,yN ] ∈ R
L×N denote a matrix collecting

N measured spectral vectors of size L. We assume that these
vectors are well approximated by the linear mixing model [1];
that is, for i ∈ {1, 2, . . . , N}, we have

yi = Mαi + ni

s.t.: αi ≥ 0, 1T
p αi = 1 (1)

where M ≡ [m1, . . . ,mp] ∈ R
L×p is the mixing matrix (mj

denotes the jth endmember signature and p is the number
of endmembers), αi = [αi1, αi2, . . . , αip]

T is the abundance
vector, 1p = [1, 1, . . . , 1]T is a column vector of size p (the
notation [·]T stands for the vector or matrix transpose), and ni

accounts for additive noise. The constraints αi ≥ 0 (the nota-
tion A ≥ 0 is to be understood componentwise) and 1T

p αi = 1
stem from a physical interpretation of the abundance vector
according to which the components of αi represent fractions
occupied by the corresponding endmembers; therefore, they are
nonnegative, and their sum is equal to one.

By collecting the abundance vectors in the matrix A ≡
[α1, . . . , . . . ,αN ] ∈ R

p×N and the noise vectors in the ma-
trix N ≡ [n1, . . . ,nN ] ∈ R

L×N , we may write the obser-
vation equations (1), for i ∈ {1, 2, . . . , N}, in the compact
matrix form

Y = MA+N

s.t.: A ≥ 0, 1T
p A = 1T

N . (2)

The set C ≡ {x = Mα ∈ R
L : α ≥ 0,1T

p α = 1}, assum-
ing that M is full rank, is a (p− 1)−simplex, meaning that C
has p vertices corresponding to the columns of M. MVSA aims
at finding the vertices of the simplex C, and therefore the matrix
M, by fitting a simplex of minimum volume to the observed
data Y. This concept is schematized in Fig. 1 for p = 3, where
C denotes the convex hull of the columns of M, the green
circles represent spectral vectors, and the red circles represent
vertices of the simplex, which correspond to the endmembers.
If there exist enough samples in the facets of the simplex, then
the minimum volume simplex containing the spectral vectors

corresponds to the true one, as illustrated in Fig. 1. Hence,
the identification of the minimum volume simplex is, in the
absence of noise, equivalent to the identification of M (see
[1] for further details about the minimum volume approach to
hyperspectral unmixing). In addition to the mixing matrix M,
MVSA also estimates the abundance matrix A.

A. MVSA Preprocessing

As discussed before, the vectors Mαi belong to the simplex
set C. However, this is not the case of the measured vectors yi =
Mαi + ni, owing to the presence of the observation noise ni.
Another degradation mechanism that displaces the measured
vectors further away from the original simplex set is the spectral
variability due to, namely, variations in the illumination and
surface topography. Spectral variability is often characterized
by pixel-dependent scaling factors affecting the abundance
vectors. That is, instead of αi, we have γiαi, with γi > 0,
for i ∈ {1, 2, . . . , N}, and therefore, the sum-to-one constraint
does not hold true.

The observation noise and the spectral variability are two
degradation mechanisms which have a negative impact on the
inference of the simplex of minimum volume. In order to
mitigate these negative effects, we introduce two processing
steps. In the first step, the signal subspace is identified using
the hyperspectral subspace identification by minimum error
(HySime) [28] algorithm. In the second step, the scale factors
γi > 0 are removed by means of a projection on a suitable affine
set. Below, we summarize these steps (for more details, see [1]).

1) Signal Subspace Identification: The objective of sig-
nal subspace identification is the estimation of the subspace
span(M), i.e., the subspace spanned by the columns of M.
Under the observation model (2), the identification of span(M)
may be obtained via the eigendecomposition of the sample
correlation matrix YYT /N . However, if the noise is band
dependent, the inference of span(M) is more complex. We
use HySime [28], which assumes band-dependent noise, to
estimate the noise covariance matrix and the signal subspace.
HySime outputs the estimated subspace in the form of an
orthonormal matrix U ≡ [u1, . . . ,up] ∈ R

L×p whose columns
span the same subspace as M. Notice that in this paper the
term orthogonal matrix is to be understood in the sense of
matrices with orthonormal columns. Based on U, we compute
the coordinates of yi, for i ∈ {1, 2, . . . , N}, as

Y ← UTY = UTMA+UTN. (3)

For simplicity, here, we use Y to denote both the observation
and its projection onto the identified subspace. Consequentially
yi is used to denote the observed and projected vectors.

According to (3), the projected vectors still follow a linear
mixing model with mixing matrix UTM ∈ R

p×p and noise
vectors UTN. The new model has, however, two significant
advantages with respect to the original one: 1) computational,
because p � L in most applications, and 2) improved SNR,
because ‖UTN‖F � ‖N‖F , where ‖X‖2F ≡ trace(XXT ) de-
notes the Frobenius norm of the matrix X.
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Given that span(U) = span(M), apart from estimation er-
rors which are very small if N is large, then we have M =
UUTM. The implication of this property is that we may
estimate the matrix UTM ∈ R

p×p, for example, M̂U , and then
obtain the estimate of the original mixing matrix as M̂ =

UM̂U .
2) Affine Projection: The objective of this step is to remove

the effect of pixel-dependent scale factors and, thus, to re-
cover the sum-to-one constraint. This goal may be achieved by
projecting each spectral vector onto the hyperplane that best
represents the measured data set in the least squares sense.
Here, we follow closely the work in [19].

Let

y ≡ 1

N

N∑
i=1

yi, and Y = y1T
N .

The hyperplane that best represents the measured data set in
the least squares sense is given by Hy ≡ {y ∈ R

p : y = y +
ET

p−1β β ∈ R
p−1}, where Ep−1 holds in its columns the p−

1 eigenvalues of the sample covariance matrix (Y −Y)(Y −
Y)T /N corresponding to the p− 1 largest eigenvalues of the
same matrix [19]. The orthogonal projection of the measured
vectors onto Hy is given by

yi ← y +ET
p−1(yi − y), i ∈ {1, 2, . . . , N}.

Given that, after the projection, the vectors yi ∈ R
p belong to

a (p− 1) affine set, then the sum-to-one constraint is recovered;
that is, any y ∈ Hy may be written as an affine combination of
p linearly independent vectors lying in Hy .

At this point, we would like to call attention to the fact
that the affine projection may introduce angle displacements
between the original measured vectors and the corresponding
projected ones. These displacements increase with the spread
of the scaling factors [22]. This shortcoming may be avoided by
using the projective projection instead of the affine projection
(see [1] for a detailed discussion on this issue).

B. MVSA Inference Criterion

Our goal is to perform hyperspectral linear unmixing under
the linear mixing model assumption. Following the rationale
introduced in [21] and [26], we formulate the problem by
seeking the smallest (p− 1)—simplex C that contains the data
samples Y. Assuming that the noise term UTN shown in
(3)—obtained after the data projection step—is negligible, the
hyperspectral unmixing problem may be formulated as

M̂ = argmin
M

|det(M)| ,

s.t.: QY ≥ 0, 1T
p QY = 1T

N (4)

where Q ≡ M−1 [see (2)]; since | det(M)| is the volume
defined by the origin and the columns of M, the interpretation

of optimization (4) is clear: We seek a mixing matrix M = Q−1

defining the smaller simplex that contains the observed data in
the simplex C, which is a facet of the simplex defined by the
columns of M and the origin.

Since det(Q) = 1/det(M), we can replace the problem (4)
with the following:

Q̂ = argmax
Q

log |det(Q)| ,

s.t.: QY ≥ 0, 1T
p QY = 1T

N . (5)

As already mentioned, in this paper, we are assuming that
the noise after the projection step is negligible. We call at-
tention, however, to a robust to noise and outlier version of
MVSA introduced in [26] and further developed in [21]. This
robustness is the result of replacing the hard constraint QY ≥ 0
with a soft constraint −1T hinge(−QY)1, where hinge(x) is
an elementwise operator that, for each component, yields the
negative part of x. However, in this paper, we only address
the unmixing problem under the hard constraint QY ≥ 0 be-
cause our objective is mainly focused on solving (5) in a
computationally very efficient way. In the following section, we
describe our proposed implementation of MVSA which aims at
obtaining “good” (but suboptimal) solutions to the optimization
problem (5).

III. PROPOSED IMPLEMENTATION

A. Constraint Reduction

Hyperspectral data sets are often very large (in the sense
of the number of pixels that they comprise), and thus, the
optimization problem described in the previous section is com-
plex from a computational point of view. In order to lighten
the computational load of the MVSA algorithm, we adopt the
strategy followed in [21] and [26] to reduce the number of
constraints, which exploits the following fact:

{
Q ∈ R

p×p : 1T
p QY = 1T

N

}
︸ ︷︷ ︸

A

=
{
Q ∈ R

p×p : 1T
p QYYT = 1T

NYT
}

︸ ︷︷ ︸
B

. (6)

To prove that A = B, we show that A ⊂ B and that B ⊂ A.
The former relation is trivial. We prove the latter by reduction
to absurdity. Suppose that we are given a matrix Qa ∈ A and
a matrix Qb ∈ B −A. It follows that 1T

p (Qa −Qb)Y 	= 0,
or equivalently, YT ξ 	= 0, where ξT ≡ 1T

p (Qa −Qb), and
because Qa ∈ B, YYT ξ = 0. That is, YT ξ belongs to the
null space of Y. This is, however, impossible because the
intersection between the null space of Y and the range of YT

is just the zero vector.
Now, assuming that Y is full rank, then YYT is invertible,

and we may then write

1T
p QY = 1T

N ⇔ 1T
p Q = qp (7)
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where qp ≡ 1T
NYT (YYT)

−1
can be obtained beforehand.

Then, the problem in (5) is simplified to the following form:

Q̂ = argmax
Q

log |det(Q)|

s.t.: QY ≥ 0, 1T
p Q = qp. (8)

Notice that, by applying the constraint reduction, we can greatly
reduce the number of active constraints in the equality con-
straint (from pN to p).

MVSA is initialized with the set of endmembers M ≡
[m1, . . . ,mp] generated by the VCA [15] algorithm. We se-
lected VCA because it is one of the fastest among the state-of-
the-art pure pixel-based methods. In order to ensure that most
vectors belong to the convex set generated by the columns of
M, we expand the initial simplex to increase the number of pix-
els that are inside the convex hull of the identified endmembers,
which leads to very few active nonnegativity constraints, i.e.,
Qyi > 0 for most pixels. For instance, if there are n samples
outside of the current simplex, with n � N , we reduce the
number of active constraints in the inequality constraint from
pN to pn. This reduces computational complexity because,
during the computation, inactive constraints are temporarily
ignored, although we continue to track them.

B. MM Optimization. Sequence of Convex Subproblems

The optimization problem (8) becomes convex only when Q
is restricted to the cone of symmetric positive definite matrices.
This is not the case in our application where Q is neither
symmetric nor positive definite yielding a nonconvex and thus
quite challenging optimization problem. Herein, we adopt the
“minorize-maximization” (MM) framework [29] to find the
local optima for (8). The MM scheme is an iterative procedure
that, at each iteration, builds a minorizer of the objective
function and maximizes it. When the minorizer function is
optimized, the original objective function is driven downhill as
needed. For the MM procedure to make sense, the sequence of
minorizers should be much easier to optimize than the original
problem.

Let x ≡ vec(Q) denote the operator that stacks the columns
of Q in the column vector x, f(x) ≡ log | det(Q)|, and
φ(x;x(t)) denote a minorizer for f at x(t); that is, f(x(t)) =
φ(x(t);x(t)), and f(x) ≥ φ(x;x(t)) for all x. Given that
vec (AB) = (BT ⊗ I) vec (A) = (I⊗A) vec(B), where ⊗
denotes the Kronecker operator and I is the identity matrix with
suitable dimension, then our MM iterative procedure is given by

x(t+1) = argmax
x

φ
(
x;x(t)

)
s.t.: AIx ≥ bI , AEx = bE (9)

where

AI ≡ (YT ⊗ I) ∈ R
pN×p2

AE ≡
(
I⊗ 1T

p

)
∈ R

p×p2

(10)
bI ≡ 0 ∈ R

pN

bE ≡ qp ∈ R
p.

Let g(x) ≡ vec(Q−T ) and H(x) ≡ −Kn[Q
−T ⊗Q−1],

where Kn is the commutation matrix (i.e., Knvec(A) =
vec(AT )), denote respectively the gradient and the Hessian of
f . As a minorizer for f , we use the quadratic function

φ
(
x;x(t)

)
≡f

(
x(t)

)
+ g(t)T

(
x− x(t)

)
+

1

2

(
x− x(t)

)T

G(t)
(
x− x(t)

)
(11)

=f
(
x(t)

)
+ c(t)

T

x+
1

2
xTG(t)x (12)

where G ≡ min{λmin(H),−υ)}I, with λmin(H) standing for
the minimum eigenvalue of H and υ > 0 being a small positive
number, and c(t) ≡ g(t) −G(t)x(t).

We conclude therefore that the core step in the MVSA
algorithm is the computation, in each iteration, of the solution
of a quadratic problem with linear inequality and equality
constraints with the following structure:

max cTx+
1

2
xTGx

s.t.: AIx ≥ bI , AEx = bE (13)

where AIx ≥ bI and AEx = bE are defined in (10). Since
G is negative definite, the quadratic problem (13) is strictly
convex, and its difficulty is equal to finding a solution to a
linear optimization problem [27]. Thus, we have transformed
the nonconvex optimization problem into the solution of a
sequence of convex quadratic problems.

The pseudocode for the MVSA algorithm is shown in
Algorithm 1. As mentioned in Section III-A, the initialization
x0 is provided by an expansion of the VCA estimate to increase
the number of pixels that are in the convex hull of the identified
endmembers. The gradient and the Hessian of f are computed
in line 4. In line 5, λmin(H) represents the minimum eigenvalue
of H, which is a real number because H is symmetric. Since
min{λmin(H),−υ)} < 0, matrix G is negative definite.

Algorithm 1 MVSA pseudocode

1: INPUT: AI , AE , bI , bE , x0 (initialization)
2: Convergence ← false
3: repeat
4: g ← ∇f(x0), H ← ∇2f(x0)
5: G ← min{λmin(H),−υ)}I
6: c ← g −Gx
7: x ← solution of the quadratic optimization (13)
8: if f(x0) > f(x) then
9: do line search until f(x0) ≤ f(x)

10: end if
11: if |f(x0)− f(x)|/|f(x)| < threshold then
12: Convergence ← true
13: end if
14: x0 ← x
15: until Convergence
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To avoid the computation of λmin(H) at each iteration, an
alternative to the definition of G shown in line 6, which we
found heuristically to work very well in practice, is

G = −υI+ diag(g2) (14)

where diag(g2) stands for a diagonal matrix with diagonal
elements given by the square of the elements of g.

Because it can only be guaranteed that G−H is negative
definite in a neighborhood of x(t), then it cannot be guaranteed
that φ(x;x(t)) is, in fact, a minorizer of f . In order to ensure
that f(x0) ≥ f(x) after solving the optimization (13), i.e., to
have a monotonic behavior, we implement in line 9 of MVSA a
line search between x and x0 if f(x0) > f(x).

C. Fast Interior Point Method to Solve the Quadratic
Problem (13)

At this point, it is also important to notice that AI is of
size of pN × p2, which brings difficulties for solving problem
(13) in terms of computational time and especially in terms of
RAM. For instance, for a problem with p = 20 endmembers
and N = 512× 512, it would be prohibitive to manipulate AI .
This roadblock has been a major limitation of MVSA in the
past. In this paper, we address this problem by using the interior
point method to solve the quadratic problem (13).

The Karush–Kuhn–Tucker (KKT) conditions for the
quadratic problem (13) are

Gx−AT
I λ+AT

Eμ+ c = 0

AIx− bI ≥ 0

AEx− bE = 0

(AIx− bI)iλi = 0, i = 1 . . . nI ≡ Np

λ ≥ 0 (15)

where λ ≡ [λ1, . . . , λnI
]T , μ ∈ R

p are the Lagrangian multi-
pliers for the inequality and equality constraints, respectively,
nI is the number of inequality constraints, and the notation
(X)i stands for the ith row of matrix X.

By introducing a slack vector s ≡ [s1, . . . , snI
]T , the non-

linear system (15) is transformed into a nonlinear system of
equations that can be solved by the interior point method so
that the problem becomes

Gx−AT
I λ+AT

Eμ+ c = 0

AIx− s− bI = 0

AEx− bE = 0

siλi = 0, i = 1 . . . nI

λ, s ≥ 0. (16)

A predictor corrector interior point algorithm [27] is used to
solve (16). The predictor corrector algorithm solves two times
the calculation of the Newton step of the system of equations
(16): one time to get the affine Newton step and the other to
correct the affine step getting the final Newton step. Notice

that the Newton steps in both cases should be constrained such
that the vectors λ and s are nonnegative and strictly positive,
respectively. The two systems that need to be solved in order to
get the affine and final Newton steps are respectively⎡
⎢⎢⎣

G AT
E 0 −AT

I

AI 0 −I 0
AE 0 0 0
0 0 Λ S

⎤
⎥⎥⎦
⎡
⎢⎢⎣

Δxaff

Δμaff

Δsaff

Δλaff

⎤
⎥⎥⎦=

⎡
⎢⎢⎣

−rd
−rI
−rE
−ΛSe

⎤
⎥⎥⎦

(17)
where

rd ≡ Gx−AT
I λ+AT

Eμ+ c
rI ≡ AIx− s− bI

rE ≡ AEx− bE (18)
Λ ≡ diag(λ1, . . . , λnI

)
S ≡ diag(s1, . . . , snI

)

e ≡ [1, . . . , 1]T⎡
⎢⎢⎣

G AT
E 0 −AT

I

AI 0 −I 0
AE 0 0 0
0 0 Λ S

⎤
⎥⎥⎦
⎡
⎢⎢⎣

Δx
Δμ
Δs
Δλ

⎤
⎥⎥⎦

=

⎡
⎢⎢⎣

−rd
−rI
−rE

−ΛSe−ΔΛaffΔSaffe+ σρe

⎤
⎥⎥⎦ (19)

where

ΔΛaff ≡ diag
(
Δλaff

1 , . . . ,Δλaff
nI

)
ΔSaff ≡ diag

(
Δsaff1 , . . . ,ΔsaffnI

)
ρ ≡ sTλ

nI
(20)

and σ ∈ (0, 1]. The predictor corrector interior point algo-
rithm for the solution of the quadratic problem is shown in
Algorithm 2.

Algorithm 2 The predictor corrector interior point algorithm

1: Initialize (x0,μ0, s0,λ0) with s0, λ0 > 0
2: k ← 0
3: while σ, ρ ≥ 10−8 do
4: (x,μ, s,λ) ← (xk,μk, sk,λk)
5: solve (17) and get (Δxaff ,Δμaff ,Δsaff ,Δλaff)
6: ρ ← (sTλ/nI)
7: α̂aff ← max{α ∈ (0, 1]|(s,λ) + α(Δsaff ,Δλaff) ≥ 0}
8: ρaff ← (s+ α̂affΔsaff)T (λ+ α̂affΔλaff)/nI

9: σ ← (ρaff/ρ)
3

10: solve (19) and get (Δx,Δμ,Δs,Δλ)
11: τk ← 1− (1/(k + 1))
12: α̂ ← max{α ∈ (0, 1]|(s,λ) + α(Δs,Δλ) ≥

(1− τk)(s,λ)}
13: (xk+1,μk+1, sk+1,λk+1) ← (xk,μk, sk,λk)+

α̂(Δx,Δμ,Δs,Δλ)
14: k ← k + 1
15: end while
16: return xk
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It should be noted that, since the interior point method con-
verges to the solution of the KKT conditions and the quadratic
problem is convex, the solution will be unique and the optimal
solution of the quadratic problem. Therefore, Algorithm 2
converges to the optimal solution. The number of iterations
needed for convergence is dependent on the allowed error. In
all our experiments, we have observed that a maximum number
of iterations set empirically to 150 yielded an error that is
negligible from a practical point of view. In this respect, it
should be mentioned that the convergence of Algorithm 2 is
quadratic when the error is small. This behavior is certainly
related to the observed negligible error after 150 iterations. In
view of these observations, we have set the maximum number
of iterations to 150 in all experiments.

D. Normal Equations and Implementation

From the interior point method description in Algorithm 2,
it can be seen that the main computational tasks are those
described in lines 5 and 10 of Algorithm 2, i.e., those related to
the computation of the Newton step. In the case of MVSA, the
number of unknowns is p2, the number of inequality constraints
is nI = Np, and the number of equality constraints is nE = p,
where N is the number of pixels in the hyperspectral data. As
a result, the Jacobian matrix of the systems (17) and (19) is
of size (2Np+ p2 + p)× (2Np+ p2 + p). This means that,
for an image with 250 × 190 pixels and p = 20 endmembers,
the size of the matrices is already prohibitively large for the
systems to be solved directly, both computationally and in terms
of RAM consumption. However, by exploiting the Jacobian
structure system, the problem can be solved progressively by
deriving the “normal equations” [27] as follows:(

G+AT
I S

−1ΛAI

)
Δx+AT

EΔμ

= −rd +AT
I S

−1Λ(−rI −Λ−1rΛS)

AEΔx = −rE

Δs = AIΔx+ rI

Δλ = −S−1Λ(Λ−1rΛS +Δs) (21)

where rΛS is the last right term of both systems (17) and (19).
It can be seen in (21) that, in order to solve both systems (17)

and (19), the first two equations can be solved by forming a
(p2 + p)× (p2 + p) linear system, thus obtaining Δx and Δμ.
Then, Δs is obtained from the third equation using Δx, and
finally, Δλ is obtained from the last equation using Δs.

The multiplication of the diagonal matrices S−1, Λ (and
their inverses) with vectors can be done by the membership
multiplication of the vector in the diagonal of the matrices
with the respective vector. As a result, there is no need to
store explicitly the diagonal matrices, but just the vectors in the
diagonal. The multiplication of the very large and sparse matrix
AI with a vector v in our case can be computed as a matrix
by matrix multiplication, i.e., AIv = VY and AT

I v = VYT ,
where Y is the sample matrix and V is the matrix formed by v
with a column-major order. These multiplications can be done
efficiently by dense matrix by matrix multiplication. The same

concept applies to the multiplication of AT
I v. It can be also

observed that the symmetric matrix of the linear system, formed
by the first two equations of (21), is the same for the solution
of Δx and Δμ in both systems (17) and (19); therefore, the
inverse is computed just once. Since p, in practice, is small, for
example, less than 25, this matrix is of low dimension and can
be computed rapidly.

Up until now, the only remaining challenge is how to ef-
ficiently compute the term AT

I S
−1ΛAI . Since we want to

avoid using the matrix AI due to its large size, a methodology
will be presented for exploiting the structure of AI . We will
examine first the computation of AT

I S
−1Λ. Our goal is to

create a compact dense form of this computation, i.e., without
zero elements and without storing AT

I and the diagonal matrix
S−1Λ. Let sinvλ be the matrix formed by the diagonal of
S−1Λ. We can express the multiplication using zero initial
index as follows:

(
AT

I S
−1Λ

)
compact

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

λ0

s0Y00

λp

spY01
. . .

λ(N−1)p

s(N−1)pY0N−1

...
...

...
...

λp−1

sp−1Y00

λp

spY01
. . .

λNp−1

sNp−1Y0N−1

...
...

...
...

λ0

s0Y(p−1)0

λp

spY(p−1)1
. . .

λ(N−1)p

s(N−1)pY(p−1)N−1

...
...

...
...

λp−1

sp−1Y(p−1)0

λp

spY(p−1)1
. . .

λNp−1

sNp−1Y(p−1)N−1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(22)

The multiplication AT
I S

−1ΛAI can be described also in
compact form by the dense matrix by matrix multiplication
(AT

I S
−1Λ)compactY

T . The final product is a p2 × p matrix
which can be easily factored into the desired AT

I S
−1ΛAI

p2 × p2 matrix, using Algorithm 3.

Algorithm 3 Formulation of the matrix AT
I S

−1ΛAI

1: AT
I S

−1ΛAI ← 0
2: for i = 0 to p do
3: for k = 0 to p do
4: for j = 0 to p do
5: AT

I S
−1ΛAI [k + j ∗ p+ (k + i ∗ p) ∗ p2] ←

(AT
I S

−1ΛAI)comp[j + (k + i ∗ p) ∗ p]
6: end for
7: end for
8: end for

From the preceding discussion, we have seen that there is no
need to store the large matrix AI . The largest matrix used is
the p2 ×N dimensional (AT

I S
−1Λ)compact which is p times

smaller than AI . This makes the problem feasible for values of
p of the order of 20.

From the discussion in this section, we conclude that the
main computational tasks in our presented method are the
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Fig. 2. Flowchart of the proposed MVSA algorithm, from the input (hyperspectral image) to the output (endmember signatures).

calculation of (AT
I S

−1Λ)compactY
T and the matrix multipli-

cations of the type AIv and AT
I v. Using a naive matrix by

matrix multiplication, this leads to a computational complexity
of the order O(p3N + p2N).

In Algorithm 4, we present the predictor corrector algorithm
with all the described optimizations. We will explain the al-
gorithm in relation to Algorithm 2. Line 5 of Algorithm 2
is replaced by lines 5–20 of Algorithm 4. In these lines, the
solution of (17) is obtained using the normal equations (21). It
can also be seen in these lines that we use the optimizations
that we described, like calculating the compact representation
of (22) in line 9 and applying Algorithm 3 in line 11. Also, in
line 7, we use a notation also used in Matlab, specifically the
(:) notation, which means to vectorize the matrix in column-
major order. Also, when we use the capital letter of a vector,
like X, we mean that the vector x is made a matrix in column-
major order. Continuing line 7 of Algorithm 2 is replaced by
lines 22–24 of Algorithm 4. Line 10 of Algorithm 2 is replaced
by lines 27–35 of Algorithm 4. In these lines, the linear system
(19) is solved using the normal equations (21). Note that, here,
we reuse the inverse matrix obtained from line 13. Finally,
line 12 of Algorithm 2 is replaced by lines 37–39 of Algorithm 4.
Having presented Algorithm 4, line 9 of the basic MVSA
Algorithm 1 should call Algorithm 4 for obtaining the solution
of the quadratic optimization problem. A flowchart describing
the full process of the algorithm from the input (hyperspectral
image) to the output (endmembers) is included in Fig. 2.

Algorithm 4 Pseudocode of an optimized predictor corrector
interior point algorithm

1: INPUT: Y, c, G, AE , bI , bE

2: (x,μ, s,λ) ← (x0, e, e, e), e = [1, . . . , 1]T

3: ρ ← 1, σ ← 1, k ← 1
4: while (σ > 10−8 or ρ > 10−8) do
5: s−1λ ← s−1. ∗ λ
6: rd ← G ∗ x+ c− (L ∗YT )(:) +AT

E ∗ μ
7: rI ← (X ∗Y)(:)− s− bI

8: rE ← AE ∗ x− bE

9: (AT
I S

−1Λ)compact ← CalculateCompact(Y, s−1λT )
//Calculate Equation (22)

10: (AT
I S

−1ΛAI)compact ← (AT
I S

−1Λ)compact ∗YT

11: AT
I S

−1ΛAI ←ConstructMatrix((AT
I S

−1ΛAI)compact)
//Apply Algorithm 3

12: K ← G+AT
I S

−1ΛAI

13: Inv ←
[

K AT
E

AE 0

]−1

14: rh ← s−1λ. ∗ (rI + s)
15: rh ← −rd − (RH ∗YT )(:)

16: rh ←
[

rh
−rE

]
17: ΔxΔm ← Inv ∗ rh
18: Δxaff ← ΔxΔm(1 : p2)
19: Δsaff ← (ΔXaff ∗Y)(:) + rI
20: Δλaff ← −s−1λ. ∗ (s+Δsaff)
21: ρ ← sTλ/nI

22: αΔs ← minΔsaff<0 −s./Δsaff

23: αΔλ ← minΔλaff<0 −λ./Δλaff

24: αaff ← min(αΔs, αΔλ, 1)
25: ρaff ← (s+ αaffΔsaff)T (λ+ αaffΔλaff)/nI

26: σ ← (ρaff/ρ)
3

27: scorrected ← s+ λ−1. ∗Δλaff . ∗Δsaff − σ ∗ ρ ∗ λ−1

28: rh ← s−1λ. ∗ (rI + scorrected)
29: rh ← −rd − (RH ∗YT )(:)

30: rh ←
[

rh
−rE

]
31: ΔxΔm ← Inv ∗ rh
32: Δx ← ΔxΔm(1 : p2)
33: Δμ ← ΔxΔm(p2 + 1 : end)
34: Δs ← (ΔX ∗Y)(:) + rI
35: Δλ ← −s−1λ. ∗ (scorrected +Δs)
36: τ ← 1− (1/(k + 1))
37: αprimal ← minΔs<0 −τ ∗ s./Δs
38: αdual ← minΔλ<0 −τ ∗ λ./Δλ
39: α ← min(αprimal, αdual, 1)
40: (x,μ, s,λ) ← (x,μ, s,λ) + α(Δx,Δμ,Δs,Δλ)
41: k ← k + 1
42: end while

IV. SIMULATED EXPERIMENTS

In this section, we compare the proposed implementation
of MVSA with some state-of-the-art endmember extraction
algorithms such as VCA [15] MVES [19], and MVC-NMF
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TABLE I
COMPARISON OF ENDMEMBER EXTRACTION ALGORITHMS ON A SYNTHETIC IMAGE WITH SIZE OF N = 100× 100 PIXELS AND p = 5 ENDMEMBERS

CONTAINING PURE MINERAL SIGNATURES FROM THE USGS LIBRARY UNDER DIFFERENT NOISE LEVELS. THE COMPUTATIONAL

TIMES (SECONDS) ARE ALSO INCLUDED. ALL THE RESULTS ARE OBTAINED BY AVERAGING 30 INDEPENDENT RUNS

[24]. VCA is a pure pixel-based algorithm, while MVES and
MVC-NMF are nonpure pixel-based algorithms.

Concerning the parameters involved in the algorithms we use
the following settings. MVSA depends on three parameters:
the parameter ν ensuring that the matrix G shown in (14) is
negative definite, the maximum number of iterations needed for
MVSA to converge (outer loop), and the maximum number of
iterations that the interior point method needs to converge (inner
loop). In all the experiments conducted in this section, these pa-
rameters were set to 10−6, 4, and 150. The MVES algorithm, as
implemented by the authors of [19], depends on the number of
full cycles over the rows of the matrix of the unknowns needed
to converge. The maximum number of iterations has been set
by the authors to 10 ∗ p, where p is the number of endmembers.
In the following comparisons, we kept this parameterization.
Furthermore, in this experiment, we use a fast implementation
of the MVES algorithm distributed by the authors of MVES,2

in which they propose a solution to reduce the dimensionality
of the problem by discarding samples from the interior of the
convex hull when the number of endmembers are below ten.
Here, we assume that the authors do not use the convex hull
for higher dimensions because the problem of calculating it is
computationally expensive and also due to the fact that in very
high dimensions the data accumulate close to the convex hull
even if a uniform distribution is assumed. Finally, MVC-NMF,
along with its parameters, has been optimized for execution in
accordance with the guidelines provided in [24]. Specifically
the value of the MVC-NMF regularization parameter used in
our experiments is τ = 0.01.

To evaluate the performance of the different algorithms, the
estimated abundance fractions Â and the estimated mixing
matrix M̂ are compared with the true ones (A and M, respec-
tively). We recall that MVSA is an unmixing algorithm that
estimates simultaneously the mixing matrix M̂ = Q̂−1 and the
abundances Â = Q̂Y.

In all experiments, the number of endmembers, p, was es-
timated using the HySime method in [28], which has been
shown to be effective for this task and also for dimensionality
reduction purposes [1]. We use several metrics to evaluate
the proposed approach. The first one is the mean square er-
ror (MSE), denoted as ‖ ε ‖F = ‖ M̂−M ‖F where ‖ · ‖F

2Go to http://mx.nthu.edu.tw/~tsunghan/download/MVES_code.zip.

stands for the Frobenius norm. Another metric considered
in our experiments is the reconstruction error, computed as
rε = ‖ Ŷ −Y ‖F = ‖ M̂Â−Y ‖F . The third metric used in
this work is the spectral angle distance (SAD) (in degrees)
expressed as SAD = cos−1(mT

i m̂i/‖ mi ‖‖ m̂i ‖) (degrees)
[2]. Although SAD may not be completely accurate for match-
ing libraries to endmembers, particularly if the endmembers are
themselves mixtures or if the atmospheric correction process
conducted on the image is not perfect, we have decided to use
SAD as it is a standard metric for spectral signature compar-
ison. Our implementation of MVSA has been carried out in
Matlab and compared with the Matlab implementations of the
other algorithms tested as provided by their authors.

A. Pure Pixel-Based Experiments

This experiment aims at evaluating MVSA for scenarios
with pure pixels. In this experiment, the synthetic image, with
a size of N = 100× 100 pixels and p = 5 endmembers, is
constructed according to the linear model given by (1) using
the procedure described in [15] with a maximum purity of
1. That is, for each endmember, there is at least one pure
pixel in the simulated image. The spectral signatures were
randomly selected from the USGS library [30] (convolved and
downsampled to AVIRIS wavelengths). It should be noted that
the USGS signatures considered in experiments are randomly
sampled from a subset of the USGS library formed by retaining
62 signatures so that the minimum angle between any couple
of signatures was larger than 10◦. Zero-mean white Gaussian
noise, defined as SNR = 10 log10(E‖Y‖2F /E‖N‖2F ) (dB), has
been added to the synthetic scene. In our experiments, the
proposed MVSA algorithm only considers the hard constraint
QY ≥ 0. As shown in [26], under the hard constraint, MVSA
performs very good under relatively low noise levels. Finally,
it should be noted that the results are obtained by averaging 30
independent Monte Carlo runs and all simulated experiments
have been performed in a desktop personal computer with the
latest Intel Core I5 CPU and 4 GB of RAM.

Table I shows the results obtained by the aforementioned
methods for the considered scene with different noise levels. It
can be observed that all algorithms provide comparable results,
which reveals that nonpure pixel-based algorithms such as
MVSA, MVES, and MVC-NMF can tackle well problems with
pure pixels. Furthermore, it can be observed that our algorithm
provides slightly better results than the other tested methods



5076 IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 53, NO. 9, SEPTEMBER 2015

TABLE II
COMPARISON OF ENDMEMBER EXTRACTION ALGORITHMS ON A SYNTHETIC IMAGE WITH SIZE OF N = 100× 100 PIXELS AND p = 5 ENDMEMBERS

CONTAINING NONPURE MINERAL SIGNATURES (MAXIMUM PURITY OF 0.8) FROM THE USGS LIBRARY UNDER DIFFERENT NOISE LEVELS. THE

COMPUTATIONAL TIMES (SECONDS) ARE ALSO INCLUDED. ALL THE RESULTS ARE OBTAINED BY AVERAGING 30 INDEPENDENT RUNS

Fig. 3. Unmixing results for a simulation with nonpure pixels using different numbers of endmembers: (a) p = 3 and (b) p = 10 for VCA MVSA, MVC-NMF,
and MVES algorithms, respectively, where Y denotes the spectral vectors v1 ≡ [1, 0, . . . , 0]T and v2 ≡ [0, 1, 0 . . . , 0]T .

in terms of MSE reconstruction error and SAD. Concerning
the computational time, MVSA is notably faster than MVES
and MVC-NMF. A final aspect that should be underlined is
that all algorithms obtained very good reconstruction error,
particularly MVSA and MVES. Both algorithms obtained re-
construction error close to zero. This is expected due to the
nonnegative constraint that both algorithms use which forces
all pixels into the simplex and leads to very low reconstruction
error.

B. No Pure Pixel-Based Experiments

In this section, we evaluate MVSA by assuming that no
pure pixels exist in the considered image. The same exper-
imental setting (based on the procedure described in [15])
was constructed as in the previous experiments, with a size
of N = 100× 100 pixels and p = 5 endmembers. In order
to make sure that there are no pure pixels in the simulated
image, abundance fractions with purities [22] (i.e., maximum
abundance fractions) greater than 0.8 are discarded in the sim-
ulation so that only mixed pixels exist. Table II shows the ob-
tained results from the same aforementioned methods for the
considered scene with different noise levels. As expected, the
algorithms without the pure pixel assumption such as MVSA,

Fig. 4. Endmember signatures estimated by MVSA, VCA, MVES, and MVC-
NMF in a simulation with SNR = 50 dB noise and nonpure pixels, which
corresponds to the experiment reported in Fig. 3(a).

MVES, and MVC-NMF largely outperform the pure pixel-
based VCA algorithm. Another important observation is that,
as it was the case in the previous experiment, the two minimum
volume-based algorithms (MVES and MVSA) obtained very
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TABLE III
PROCESSING TIME (SECONDS) OBTAINED FOR THE PROPOSED MVSA ALGORITHM ON SYNTHETIC IMAGES WITH N = 50× 50, N = 100× 100,

N = 150× 150, SNR = 70, dB AND MAXIMUM PURITY OF 0.8 FOR DIFFERENT NUMBERS OF ENDMEMBERS

low reconstruction errors, i.e., close to zero. This is due to
the fact that, under the nonnegativity constraint, the minimum
volume-based algorithms enclose all observations into the sim-
plex. It can also be observed that, among the nonpure pixel-
based algorithms, MVSA obtains the best results with respect
to SAD reconstruction error and MSE for all considered noise
levels. Concerning the computational time, MVSA is much
faster than MVES and MVC-NMF.

For illustrative purposes Fig. 3 compares the four methods
graphically, using a simulation with nonpure pixels, with (a)
p = 3 and (b) p = 10 endmembers, N = 100× 100 spectral
vectors, maximum purity of 0.8, and noise level of SNR =
50 dB. Finally, Fig. 4 shows the obtained spectral signatures
after conducting the experiment reported in Fig. 3(a). These
two figures reveal the quality of MVSA estimates with regard
to those obtained by other algorithms.

C. Evaluation of the Efficiency

An important aspect in this experiment is to analyze the
efficiency of the proposed MVSA algorithm from a computa-
tional viewpoint. In order to explore this issue, we now discuss
the computational performance of Matlab implementations of
MVSA (by us) and MVES (by the authors of [19]) using USGS
library endmembers. All our experiments were conducted using
the latest Intel Core I7 CPU and 32 GB of RAM. Notice
that, here, we only report the results obtained by MVES and
MVSA as both algorithms solve similar optimization problems
but using a completely different strategy. Table III reports
the processing time for problems with N = 50× 50, N =
100× 100, and N = 150× 150 pixels using different numbers
of endmembers. In Table III, the number of endmembers p
goes up to 20. This is a very difficult problem, and (as we
mentioned in the previous experiment) it is difficult to have p =
20 endmembers in one given pixel or a local area. As a result,
the main purpose of using p = 20 is to show the computational
efficiency of our algorithm for problems with large scale. At
this point, we also emphasize that, in our experiments, we have
not considered purities lower than 0.8 since the probability of
having an abundance larger than a given value of p vanishes
as p increases. It can be seen that, in Table III, MVSA is
very efficient for moderately large and complex problems,
which would be impractical for other methods like MVES. For
instance, it only took 23.3 s for p = 20 and N = 150× 150,
which is prohibitive for the previous MVSA implementation
[26] developed in Matlab, from the viewpoints of either RAM
memory requirements and computational time. This problem
is also extremely time consuming for the Matlab version of

MVES distributed by the authors of the algorithm, as shown
in Table III.

V. REAL DATA EXPERIMENTS

The scene used in our real data experiments is the well-
known AVIRIS Cuprite data set, available online in reflectance
units.3 This scene has been widely used to validate the perfor-
mance of endmember extraction algorithms. The portion used
in experiments corresponds to a 250 × 191 pixel subset of
the f970619t01p02r02 online data set in reflectance units.4 The
scene comprises 224 spectral bands between 0.4 and 2.5 μm,
with a nominal spectral resolution of 10 nm. Prior to the
analysis, bands 1–6, 105–115, 150–170, and 222–224 were
removed due to water absorption and low SNR in those bands,
leaving a total of 183 spectral bands, for which according
to the HySime [28] algorithm we obtain an estimate of p =
14 endmembers. Here, we use HySime to estimate the number
of endmembers as we believe that the result of HySime is quite
accurate judging from the computed low noise. The Cuprite
site is well understood mineralogically and has several exposed
minerals of interest, all included in the USGS library considered
in experiments, denoted splib065 and released in September
2007. In our experiments, we use spectra obtained from this
library (convolved and downsampled to AVIRIS wavelengths)
in order to substantiate the quality of the endmembers derived
by MVSA and compare them with those produced by other
algorithms. For illustrative purposes, Fig. 5(a) shows a mineral
map produced in 1995 by USGS, in which the Tricorder 3.3
software product was used to map different minerals present
in the Cuprite mining district.6 The 250 × 190 pixel sub-
scene used in our experiments is shown in Fig. 5. It should
be noted that all experiments with this subscene have been
performed in a desktop personal computer with an Intel Core I5
CPU and 4 GB of RAM. Concerning the parameters involved
in the considered algorithms we consequentially follow the
settings in the simulated experiments. Regarding the affine
projection we have used the projective projection instead of the
affine one (see [1]) as the former works slightly better in this
example.

A fundamental assumption in the minimum volume unmix-
ing algorithms is that, in a given data set, the spectral samples

3http://aviris.jpl.nasa.gov/html/aviris.freedata.html
4Subscene is available from http://www.lx.it.pt/%7ebioucas/code.htm
5http://speclab.cr.usgs.gov/spectral.lib06
6http://speclab.cr.usgs.gov/cuprite95.tgif.2.2um_map.gif



5078 IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 53, NO. 9, SEPTEMBER 2015

Fig. 5. (a) 250 × 190 pixel subscene used in our experiments, showing the location of different minerals in the Cuprite mining district in Nevada. The map is
available online. (b) Projection of the data on the first two PCA components.

belong to a simplex and that there are at least p− 1 samples on,
or in the neighborhood of, each simplex facet [1]. It happens
that the spatial distribution of Cuprite spectral vectors does
not comply with that assumption, which renders the associated
unmixing an ill-posed problem. The fact is that, given an
estimated simplex, the large majority of the spectral vectors
are outside of that simplex; it is a clear symptom of that ill-
posedness. For example, the simplexes estimated by VCA [15],
N-FINDR [16], and the successive volume maximization [31]
leave respectively 47733, 47732, and 47734 samples outside
the simplex in a maximum of 47750 samples, which is the size
of the data set. A similar pattern is observed using minimum
volume-based algorithms.

We conclude therefore that the spatial distribution of Cuprite
spectral vectors is far away from that envisaged in the minimum
volume unmixing framework, thus precluding those methods
to perform optimally. In order to regularize the facets of the
simplex, we conceived a very simple procedure that never-
theless produces useful results. We start by running VCA t
times and retain the simplex of maximum volume. In the case
of VCA, this makes sense given the random directions that
this algorithm uses to find the extremes of the simplex. For
t = 30, this procedure takes just 2 s in a standard personal
computer. Next, we project the data set in an inflated simplex
obtained by allowing the abundances to take negative values.
That is, we solve a modified fully constrained least square
(MFLCS) problem with the constraints αi ≥ −ε, where ε > 0
and 1T

p αi = 1, for i = 1, . . . , N . The MFLCS is solved by
a minor modification of the SUNSAL algorithm available in
[32]. We apply then MVSA to the regularized data Yreg =

ÂvcaX̂t, where Âvca is the mixing matrix estimated by VCA
and X̂t is the result of the MFLCS just described. The complete
procedure is available in our online demo: http://www.lx.it.pt/
%7ejun/DemoMVSA.zip.

Fig. 5(b) shows a scatterplot of the original data jointly with
the VCA and the MVSA endmembers for ε = 0.01. It is clear
that the simplex defined by MVSA is an enlarged version of the
one defined by VCA. Table IV shows the processing time for

TABLE IV
PROCESSING TIME (SECONDS) TAKEN BY MVSA, MVES, AND

MVC-NMF, RESPECTIVELY, WHEN PROCESSING THE

CONSIDERED AVIRIS CUPRITE DATA SET

MVSA, MVES, and MVC-NMF, respectively. It is remarkable
that the advantages of MVSA in terms of efficiency are signifi-
cant as, for the considered data set, MVSA took less than 3 min
to perform the computation while MVES spent around 7 h and
MVC-NMF took around 50 min in the considered environment.
Such computational efficiency makes MVSA more applicable
in real scenarios.

For illustrative purposes Fig. 6 shows the abundance maps
obtained by the MVSA algorithm, where the minerals are
identified by visual interpretation of the estimated abundances
with regard to the ground-truth map in Fig. 5. In addition,
Fig. 7 shows the spectral signatures of the estimated endmem-
bers. This figure reveals a good match between the real and
estimated ones. The individual abundance maps estimated by
MVES, MVC-NMF, and VCA are not presented here due to
space considerations. Furthermore, we refer to [19], in which
the same real data were analyzed by MVES, and to [24] where
a portion of the current data set was processed by MVC-
NMF. Overall, it has been observed that the algorithms produce
some abundance maps that are similar to each other. Although
the results provided by HySime are reasonably judged from
the computed low noise, it is possible that the number of
endmembers is overestimated which affects the performance of
MVSA and MVES. On the other hand, the abundance maps
estimated by MVC-NMF were found to be more distinct from
each other. This indicates that the algorithms are sensitive to
the estimation of the number of endmembers, which, in this
paper, is performed by an external algorithm. In order to have a
fair comparison of algorithms, we decided to report results with
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Fig. 6. Abundance fraction maps estimated by the proposed MVSA algorithm: (a) Chlorapatite WS423. (b) Nontronite NG-1.a. (c) Kaolin/Smect KLF508
85%K. (d) Kaolinite KGa-2 (pxyl). (e) Buddingtonite GDS85 D-206. (f) Nontronite SWa-1.a. (g) Alunite GDS84 Na03. (h) Montmorillonite+Illi CM42.
(i) Montmorillonite+Illi CM37. (j) Alunite AL706 Na__. (k) Jarosite WS368 Pb. (l) Jarosite JR2501 K. (m) Chlorite SMR-13.e < 30um. (n) Chalcedony CU91-6A.

Fig. 7. Endmember signatures in the USGS library and the endmember estimates obtained by our MVSA algorithm. The corresponding signatures are the
following (from top to bottom): (a) Chlorapatite WS423, Nontronite NG-1.a, Kaolin/Smect KLF508 85%K, Kaolinite KGa-2 (pxyl), and Buddingtonite GDS85
D-206; (b) Nontronite SWa-1.a, Alunite GDS84 Na03, Montmorillonite+Illi CM42, Montmorillonite+Illi CM37, and Alunite AL706 Na__; and (c) Jarosite
WS368 Pb, Jarosite JR2501 K, Chlorite SMR-13.e < 30um, and Chalcedony CU91-6A.

p = 14 (the HySime estimate) for all the compared methods in
this experiment. Overall, the experimental results reported in
this section reveal that the proposed MVSA can produce similar

results to those provided by other state-of-the-art algorithms
like MVES or MVC-NMF, but in a more computationally
efficient fashion.
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VI. CONCLUSION AND FUTURE LINES

In this paper, we have described an MVSA algorithm for
unsupervised hyperspectral unmixing and its efficient imple-
mentation using the interior point method. This algorithm is a
representative method of a class of algorithms for endmember
extraction that does not need the presence of pure pixels in the
hyperspectral data. Despite the interest and proven effectiveness
of the method in toy examples and experiments with small data
sets, the algorithm had rarely been used in real applications
due to its computational complexity, resulting from the fact
that the involved optimization problem was very difficult to
handle. In this regard, one of the main contributions of this
paper is the presentation of a series of strategies in order to
lighten the computational load of MVSA, making it appealing
for real hyperspectral imaging applications. Another contri-
bution has been the detailed comparison of MVSA to other
algorithms (with and without the pure pixel assumption) using
both simulated and real data sets. Our experiments demonstrate
that, with the presented modifications, MVSA is competitive
with other state-of-the-art solutions in terms of endmember
identification and spectral unmixing accuracy and also in terms
of computational complexity, thus allowing the application of
the algorithm to problems characterized by a high number of
endmembers (i.e., complex scenes) and also by a high number
of pixels (i.e., large scenes). In future work, we will include
a soft constraint in the proposed MVSA algorithm in order to
make it more robust to noise and outliers. Furthermore, the
proposed algorithm can also be adapted to extract endmember
bundles using the framework described in [33] to address issues
of endmember variability.
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