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Coupling Simulation and Optimization to Solve
Planning Problems in a Fast-Developing Area

Xia Li,∗ Xun Shi,† Jinqiang He,∗ and Xaioping Liu∗

∗School of Geography and Planning, Sun Yat-sen University
†Department of Geography, Dartmouth College

In geographical analysis, spatial simulation and optimization are usually separate processes tackling different
problems. It is, however, increasingly necessary to integrate them. Particularly in a fast developing area, the
development to be simulated is seldom inertial (i.e., strictly following the historical trend); instead, it is likely
to be interfered by new planning measures. Meanwhile, in such an area an optimization plan might not be
even meaningful if it only addresses a snapshot of a highly dynamic landscape. In this study, we explored
the possibility of integrating cellular automata (CA), a widely used method for simulating urban development
and land use changes, and ant colony optimization (ACO), an advanced technique for solving complex path
optimization problems. We named the resulting integrated system the geographical simulation and optimization
system (GeoSOS) and applied it to a case study concerning finding the optimal path for a planned expressway in
Dongguan, a fast-growing city in one of the most economically active regions of China. In the case study, the CA
component of the GeoSOS generated simulations of the industrial land use changes for some years in the next
decade. The ACO component of the GeoSOS, which had been revised from the conventional ACO to work
on raster surfaces, took the simulations as input and completed raster-based path optimizations. In terms of the
cumulative utility, a measurement used to evaluate the performance of the optimization, the coupling method
surpasses the noncoupling method by 10.3 percent. Key Words: ant colony optimization, cellular automata, land use
simulation, model coupling, path optimization.

En análisis geográfico la simulación y optimización espaciales usualmente son procesos separados que abordan
problemas diferentes. Sin embargo, cada vez se hace más necesario integrarlos. En particular en una región que
se desarrolle con rapidez, el desarrollo que se deba simular rara vez sigue la inercia (o sea, que siga estrictamente
la tendencia histórica); en vez de eso, lo más seguro es que sea interferido por nuevas medidas de planificación.
Mientras tanto, en tal tipo de área un plan de optimización podrı́a no ser siquiera significativo si apenas cubriera
una fracción de un paisaje altamente dinámico. En este estudio exploramos la posibilidad de integrar autómata
celular (AC), un método ampliamente utilizado para simular desarrollo urbano y cambios en el uso del suelo, y
optimización de hormiguero (ACO), una técnica avanzada para solucionar problemas de optimización de ruta
compleja. Al sistema integrado que resultó lo denominamos sistema geográfico de simulación y optimización
(GeoSOS), el cual aplicamos a un estudio de caso dedicado a encontrar la ruta óptima para una supercarretera
planificada en Dongguan, una ciudad de rápido crecimiento en una de las regiones económicamente más activas
de China. En el estudio del caso, el componente CA del GeoSOS generó simulaciones de los cambios en uso
del suelo industrial para algunos años de la próxima década. El componente ACO del GeoSOS, que habı́a
sido revisado del ACO convencional para trabajar en superficies raster, tomó las simulaciones como insumos y
completó las optimizaciones de ruta de base raster. En términos de la utilidad acumulativa, medida usada para
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Coupling Simulation and Optimization for Planning in a Fast-Developing Area 1033

evaluar el desempeño de la optimización, el método de acoplamiento sobrepasa al método sin acople en un
10.3 por ciento. Palabras clave: optimización de hormiguero, autómata celular, simulación del uso del suelo, modelo de
acoplamiento, optimización de ruta.

There is a rich literature on geo-simulation and
optimization for various geographical applica-
tions (e.g., Batty and Xie 1994; Clarke, Hoppen,

and Gaydos 1997; Li and Yeh 2002, 2004; Bennett and
Tang 2006; Manson 2006; Torrens 2006; Xiao, Bennett,
and Armstrong 2007). In these applications, however,
simulation and optimization are usually separate pro-
cesses tackling different problems. To our knowledge,
the integration of simulation and optimization in geo-
graphical applications is an area yet to be explored.

Simulation aims to generate realistic scenarios under
given conditions, whereas the goal of optimization is to
provide optimal solution(s) to a given planning prob-
lem. In terms of Yeh’s framework that classifies the tasks
of geographic information systems (GIS) in planning
into three categories—description, prediction, and pre-
scription (Yeh 1999)—simulation is a major approach
to prediction, whereas optimization belongs to prescrip-
tion. When being performed separately, simulation usu-
ally adopts an inertial strategy; that is, it assumes that
future development will follow the historical trend (Liu
et al. 2010), and optimization in most cases also assumes
the problem to be static.

Increasingly, we see the need for coupling simula-
tion and optimization in many geographical applica-
tions. Particularly in a fast developing area, on the
one hand, the development to be simulated is seldom
inertial; instead, it is likely to be interfered by new
planning measures (which might or might not be opti-
mal solutions). On the other hand, in such an area an
optimization might not be even meaningful if it only
addresses a snapshot of a highly dynamic landscape.
As a result, for either simulation or optimization to
be practically accurate and useful in this type of area,
each needs to cooperate with the other. Specifically,
if the primary concern is prediction, then the simula-
tion should take into account the planning activities
that are likely to occur or those the planners intend to
evaluate and overlay such activities with the histori-
cal trend to generate realistic scenarios. If the primary
concern is prescription, then the optimality of a solu-
tion should be evaluated based on a dynamic process
rather than a snapshot, and the dynamics can be repre-
sented and characterized by a series of simulations. The
former (the scenario that the primary concern is pre-

diction) has been initially investigated by Li and Yeh
(2002, 2004) and Liu et al. (2010). This study focuses
on the latter scenario, in which the primary concern is
prescription.

Previous studies have mainly focused on the develop-
ment of separate simulation and optimization tools (Li
and Yeh 2002, 2004; Li, He, and Liu 2009a, 2009b; Li
et al. 2010). In this study, we explored a methodological
approach of integrating simulation and optimization for
solving an optimal path planning problem in a chang-
ing landscape. We have not found that this type of
integration has been formally reported in the spatial
analysis literature. The specific simulation method we
brought to the integration is cellular automata (CA), a
widely used method for simulating urban development
and land use changes. The optimization method we
tested is ant colony optimization (ACO), an advanced
and relatively new technique for solving complex opti-
mization problems. We named the resulting integrated
system the geographical simulation and optimization
system (GeoSOS) and applied it to a case study con-
cerning finding the optimal path for a planned express-
way in Dongguan, a fast-growing city in one of the most
economically active regions of China.

The next two sections of this article describe the CA
and ACO components of the GeoSOS, respectively,
which is followed by a section detailing the integration
of the two in the GeoSOS. The case study in Dongguan
is then presented, followed by some conclusions drawn
from this study.

Cellular Automata for Simulating Urban
Land Use Changes

As a bottom-up approach, CA consists of a collection
of discrete cells that represent spatial units, each in one
of a finite number of states. The state of each cell evolves
through a number of discrete time steps controlled by a
set of transition rules. Basically, these rules define how a
cell will evolve based on its own state and the states of its
neighboring cells. This approach is attractive because it
can represent, simulate, and reveal complex behaviors
and patterns of geographical phenomena by using some
simple rules (Batty and Xie 1994; Wu and Webster
1998).
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1034 Li et al.

Simulation of complex urban systems is one of the
successful applications of CA. Recent years have wit-
nessed increasing study of the development of geo-
graphical CA for simulating urban expansion and land
use dynamics (Batty and Xie 1994; Clarke, Hoppen,
and Gaydos 1997; Li and Yeh 2002, 2004). Many such
CA systems have generated encouraging results in solv-
ing various urban and regional simulation problems
(Clarke, Hoppen, and Gaydos 1997; Wu and Webster
1998; Li and Yeh 2002, 2004; Wu 2002).

Generically, an urban CA model can be represented
as follows:

St+1 = f (St , N) (1)

where St is the state of a cell at time point t, N repre-
sents a group of cells that are within the neighborhood
of the cell under concern, and f is a transition function
(i.e., rule) that governs the state transition from St to
St+1.

In the past three decades, a major research topic
in CA for urban simulation is how to define or de-
rive transition rules. In most cases, transition rules are
heuristically defined based on domain knowledge and
expert’s preferences. For example, the SLEUTH model
(Clarke, Hoppen, and Gaydos 1997) that addresses four
types of urban growth mechanisms, namely, sponta-
neous, new spreading center (diffusive), edge (organic),
and road-influenced growth, is controlled by the fac-
tors of DIFFUSION, BREED, SPREAD, and SLOPE-
RESISTANCE, and ROAD-GRAVITY. Other types
of urban CA have been developed to capture these
growth mechanisms by using the methods of multicri-
terion evaluation (MCE; Wu and Webster 1998), logis-
tic regression (Wu 2002), neural networks (Li and Yeh
2002), decision trees (Li and Yeh 2004), and genetic
algorithms (Li, Yang, and Liu 2008).

Among these different methods, logistic regression
is relatively easy to implement and allows for the de-
velopment probability to be straightforwardly derived
through evaluating a suitability score that combines
multiple factors. An early logistic regression CA was
proposed by Wu (2002), which is an extension of MCE-
CA (multicriterion evaluation CA) originally devel-
oped by Wu and Webster (1998). The basis of MCE is
a suitability score obtained from a linear combination:

zt
i j

= a0 + a1xt
1
+ a2xt

2
+ · · · + am xt

m
+ · · · + aMxt

M

(2)
where zt

i j is the suitability score for urban development,
a0 is a constant, xt

m is a spatial variable representing a

driving force for urban development at cell ij, and am is
the weight of that variable.

This MCE method has difficulty using training data
(e.g., land use maps or classified remote sensing data)
to calibrate the CA. To facilitate the calibration, Wu
(2002) transformed the method into a logistic form:

pt
i j

=
exp(zt

i j
)

1 + exp(zt
i j
)

= 1
1 + exp( − zt

i j
)

(3)

where pt
i j

is the development probability at cell ij.
The preceding equation only addresses the global

influences of the spatial factors. It ignores the fact that
urban development is also subject to local influences
(interactions) and that local interactions are the core of
CA. In addition, no items in Equation 3 cover potential
constraints and uncertainties, which are also critical
factors in urban development. Therefore, Equation 3
should be further revised as follows (Wu 2002; Li, Yang,
and Liu 2008):

pt
i j = (1 + (− ln γ )α)

1
1 + exp(−zt

i j
)

× f
(
�t

i j

) × con
(
s t

i j

)
(4)

In Equation 4, γ is a stochastic factor ranging from 0 to
1 and α is a coefficient to control the stochastic degree.
These two parameters represent the uncertainty in the
urban development. f (�t

i j ) is a function characterizing
the local interaction within the neighborhood of cell
ij, and Li, Yang, and Liu (2008) implemented it as the
count of all of the developed cells in the neighborhood
of cell ij, which represents local development intensity.
The function con(s t

i j ) represents constraints that might
apply to the development. In Li, Yang, and Liu (2008),
this function was used to mask out all the unavailable
sites for development, such as built-up areas, mountain
areas, water bodies, and agricultural protection zones.
At each iteration, pt

i j
is compared with a threshold T

to determine if a nonurbanized cell will be converted
into an urbanized cell:

St+1
i j =

{
Converted , pt

i j
≥ T

NonConverted , pt
i j

< T (5)

The preceding logistic CA can be used to simulate urban
development after the model has been calibrated by
using two dates of land use maps or classified remote
sensing data. The CA model proposed by Li, Yang, and
Liu (2008) is the one we chose to use in this study.
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Coupling Simulation and Optimization for Planning in a Fast-Developing Area 1035

Ant Colony Optimization for Path Finding

Researchers in spatial optimization have made ef-
forts to develop models for facilitating multiobjective
spatial decision making (Xiao, Bennett, and Armstrong
2007). A typical optimization task is site selection, with
the objective of identifying optimal locations for siting
a number of facilities, such as factories, schools, hos-
pitals, shopping centers, and warehouses (Li and Yeh
2005). Another type of spatial optimization problem
is related to linear features, particularly path finding,
with applications in robot path planning (Kruusmaa
and Willemson 2003), emergence evacuation, logistics
management, infrastructure planning, and travel de-
mand analysis (Tanga and Pun-Cheng 2004).

ACO, which was first proposed by Dorigo, Colorni,
and Maniezzo (1991), is a method that tries to solve
complex optimization problems according to simple
searching behaviors of a large number of individuals
(artificial ants). In this study, we chose ACO as the
path optimization method to be coupled with the land
use simulation.

A Brief Overview of ACO

ACO is a class of computer algorithms for solving
combinatorial optimization problems. ACO was in-
spired by observations of the behaviors of ants in seek-
ing food. In spite of the simplicity in the movement
of each individual ant, an ant colony presents a highly
structured social organization for completing complex
tasks. By mimicking biological ants, researchers have
shown that a group of cooperating artificial ants with
simple intelligence can effectively solve complex op-
timization problems (Colorni, Dorigo, and Maniezzo
1991).

ACO is devised by simulating ants’ behaviors of se-
lecting the best route from a food source to their nest
(Dorigo and Gambardella 1997). In ACO, artificial ants
explore the environment to find a route and mean-
while lay down pheromones to direct each other. The
positive feedback in the coordination among ants is
achieved by exploiting the pheromones’ communica-
tion mechanism. An early application of ACO was to
solve the traveling salesman problem, which is to find a
closed tour of minimal length connecting N given cities
(Dorigo, Maniezzo, and Colorni 1996) over a road net-
work. In the algorithm, an artificial ant’s probability of
going from its current city to another given city is de-
termined by (1) the amount of pheromone on the path
linking the two cities and (2) the visibility (measured

by the travel distance between these two cities). In ad-
dition, a “taboo” list is used to prevent going back to
a visited city. Formally, the probability for an ant to
move from city u to city v is given as follows (Dorigo,
Maniezzo, and Colorni 1996):

pk
uv(t) =

⎧⎪⎪⎨
⎪⎪⎩

[τuv(t)]α · [ηuv(t)]β∑
x∈Sk

[τux (t)]α · [ηux (t)]β
, if v ∈ Sk

0 otherwise
(6)

where pk
uv is the probability of the kth ant to move from

city u to city v; τuv is the amount of pheromone on path
(u, v); ηuv is a heuristic function related to the visibil-
ity (distance); and Sk is the cities that the kth ant is
allowed to visit. The t in the parentheses indicates that
τ , η, and p are specific about time t (i.e., one iteration
in the optimization). The parameters α and β con-
trol the relative importance of the pheromone versus
the visibility (distance). A larger value of α means the
probability is more influenced by the pheromone inten-
sity, whereas a larger value of β allows the probability to
rely more on the visibility (distance). At each iteration,
the amount of pheromone on path (u, v) is updated as
follows (Dorigo, Maniezzo, and Colorni 1996):

τuv(t + 1) = (1 − ρ)τuv(t) + �τuv(t) (7)

where

�τuv(t) =
m∑

k=1

�τ k
uv

(t) (8)

In Equation 7, ρ is a coefficient such that (1 – ρ) rep-
resents the evaporation of the pheromone trail left by
an ant between t and t+ 1; m is the total number of
ants; and �τ k

uv
(t) is a measurement of the intensity of

pheromone left by the kth ant on path (u, v) between
time t and t + 1, which is calculated as follows (Dorigo,
Maniezzo, and Colorni 1996):

�τ k
uv

(t) =
⎧⎨
⎩

Q
Lk

, if the kth ant visits (u, v)

0, otherwise
(9)

where Q is a constant, and Lk is the tour length or the
total travel cost (from the origin to the destination) of
the kth ant.

Equations 6 through 9 ensure that an ant will have
a higher probability of selecting a shorter tour route
(based on the explorations by all the ants in previous
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1036 Li et al.

iterations). This is because (1) a shorter route has a
higher intensity of pheromone left along it (Equation
9), and (2) there is a positive feedback between the
number of ants that have chosen a path and the
probability of another ant to choose the same path
(Equation 7).

The heuristic function ηuv(t) in Equation 6 is for re-
ducing randomness in the path exploration and increas-
ing the efficiency in converging to the desired route. It
is defined as the inverse of the distance, duv, between
cities u and v (Dorigo, Maniezzo, and Colorni 1996):

ηuv(t) = 1
duv

(10)

Multiobjective Path Optimization over Raster
Surface with ACO

The conventional ACO was developed to deal with
a simplified scenario, in which the algorithm primarily
considers only the cost along a vector network. A path
optimization problem in regional or urban planning can
be much more complicated. First, path optimization in
planning usually involves multiple objectives that often
conflict with one another. Typically, such an optimiza-
tion intends to minimize the cost and maximize the
coverage at the same time. Multiobjective path opti-
mization can be difficult, because it might involve a
huge solution space (Li and Yeh 2005). Second, most
path-finding algorithms are based on vector networks
(Jong, Jha, and Schonfeld 2000; Jong and Schonfeld
2003), as they require links (e.g., street lines) that con-
nect different places and identify the optimal path by
tracing adjacent nodes in a network (Current, Re Velle,
and Cohon 1985). In regional or urban planning, how-
ever, sometimes optimal paths need to be generated
from scratch; that is, they are not based on existing road
networks or there is no existing road network at all (e.g.,
in a rural area), which makes a link-node–based algo-
rithm difficult to implement. Another problem with
the vector algorithms is that in real-world planning the
cost and coverage of a path might not only be deter-
mined by the properties that can be attached to an
entire link (e.g., the length of the link) but involve
contextual properties that can vary continuously over
space (e.g., slope gradient and distance to neighboring
industrial facilities) and could be difficult to attach to
discrete objects like links. Because of these problems,
sometimes in regional or urban planning raster algo-
rithms for path optimization are desired (Yu, Lee, and

Munro-Stasiuk 2003). Over a raster surface the path
exploration is not based on and restricted by existing
road networks, and representing continuously varying
contextual information is relatively easy. Another ad-
vantage of raster-based path optimization is that it can
directly take raster data provided by GIS and remote
sensing as inputs and therefore is inherently compati-
ble with the land use change simulation that is usually
based on those raster data. Nevertheless, raster-based
path optimization has its own difficulties that have seri-
ously limited its uses in practice. A major problem of this
type of algorithm is the slow (or even zero) convergence
rate caused by the huge solution space: Theoretically,
the number of possible routes between origins and des-
tinations on a continuous surface is infinite (Zhang and
Armstrong 2008).

Li, He, and Liu (2009a) modified conventional ACO
to make it capable of addressing the two conflict objec-
tives regarding cost and coverage, respectively, and ex-
ploring path over a raster surface. In their model, they
used utility, a measurement that integrates both cost and
coverage, to evaluate the optimality of a path. The ex-
ploration of path is a cell-wise process, allowing spatially
continuous information required for accurately and pre-
cisely estimating the cost and coverage to be well taken
and integrated. To improve the convergence rate (i.e.,
efficiency) of the model, they implemented a more so-
phisticated pheromone-updating strategy and replaced
the heuristic function on visibility (η in Equation 6)
with a carefully designed direction function to guide
the ant’s decision regarding into which neighboring
cell to move. The goal of the direction function is to
achieve a balance between local exploration and des-
tination reaching. Preliminary tests on the modified
ACO model have shown encouraging results (Li, He,
and Liu 2009a).

Coupling the Simulation Model with the
Optimization Model

Many fast-growing regions have witnessed rapid ur-
ban expansion and land use changes. In such areas,
coupling land use simulation and planning optimiza-
tion should greatly benefit regional or urban planning,
because, for example, both the cost and the coverage
of a planned road can change along with the land use
changes. So far, simulation models and optimization
models have been used separately in geographical ap-
plications. Particularly, although cellular automata can
effectively simulate the evolution of open, nonlinear,
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Coupling Simulation and Optimization for Planning in a Fast-Developing Area 1037

and stochastic urban systems, to our knowledge they
have not yet been used to provide inputs to urban opti-
mization models. In this study, we explored the method-
ological and technical approach to coupling the CA-
based land use simulation with the ACO-based path
optimization under an urban setting.

The methods of model integration can be classified
into two categories: loose coupling and tight coupling
(Sikder 2009). For this study, loose coupling means
that a simulation model interacts with an optimiza-
tion model through a stable interface and that the two
models do not interfere with the one another’s inter-
nal implementation. We adopted the loose coupling
method in this study because of its simplicity and con-
venience that changes in one model will not affect
the other. In our integrated system, the communion
between the two models is achieved through message
exchange. Particularly, the various scenarios generated
by the simulation serve as the inputs to the path opti-
mization model, so that the optimization can be based
on the updated information about a changing urban en-
vironment. We named our integrated system GeoSOS
(available at http://www.geosimulation.cn/).

In this study, we tested two strategies for the opti-
mization to take the simulation inputs: the piecewise
strategy and the merging strategy. Under the piecewise
strategy, the optimization is performed over the simula-
tion result for a specific time point and does it for every
time point under consideration. Among the multiple
optimization results generated in this way, the one with
the maximum optimality value is considered to be the
most optimal. The merging strategy requires the simu-
lation results for different time points to be first merged
and then the optimization is performed over the merged
result.

Case Study: Identifying the Optimal Path
for a Planned Expressway in Dongguan,
China

The Study Area

In this case study, we applied the GeoSOS to identi-
fying an optimal path for a planned freight expressway
in Dongguan, China. Dongguan is a city located in the
Pearl River Delta, one of the fastest growing economic
regions in China. The city consists of four urban districts
and twenty-nine towns. Being about fifty miles north
of Hong Kong, Dongguan’s geographical location has
been attractive to the manufacturing industry. In the

past three decades, the area within the administrative
boundary of the city has experienced a rapid transition
from being largely rural to one of the world’s largest
manufacturing centers. For example, a single plant in
Dongguan produced more than 30 percent of the world’s
magnetic recording heads used in hard disk drives, and
another supplied 60 percent of the electronic learning
devices for the U.S. market in 2005 (Chaudhuri 2009).
Houjie, a town of Dongguan, is home to the largest
paper-making plant in Asia.

As urbanization and industrialization have expanded
in Dongguan, so have the demands on the transporta-
tion capabilities in the region (Planning Department
of Dongguan 2002). Figure 1 details the transportation
flows among the major industrial centers of Dongguan.
As shown in this map, transportation flows are closely
related to industrial activities. Although transportation
demands have continued to expand during the past
thirty years, the increase of the total length of express-
ways in Dongguan has lagged far behind its economic
growth. More recently the local government has de-
termined that the current transportation condition has
become a bottleneck to maintaining Dongguan’s lead-
ing position in the international manufacturing indus-
try. To alleviate the current traffic congestion problem,
the government is planning a new freight expressway
that connects the eastern and western parts of the
city.

The Variables and Data

As explained earlier, the objective of the ACO-based
path optimization is to maximize the utility value of a
path, and in regional or urban planning the utility value
is typically designed to represent the trade-off between
two usually conflicting factors: cost and benefit. In our
specific case in Dongguan, the primary benefit consid-
ered was the new expressway’s capability of meeting the
transportation demand resulting from the expansion in
local industrial production. We evaluated this capabil-
ity by measuring the industrial activities falling into
the neighborhood of the path and named it service cov-
erage. The primary costs considered include the travel
cost, which is represented by the total length of the
path, and the development cost, which is determined
by the land use and slope along the path. We are fully
aware that in real-world transportation planning, many
other important factors must be taken into account,
such as environmental, social, and political factors. In
this study, we chose to focus on the service coverage and
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1038 Li et al.

Figure 1. Transport flows between the
major industrial centers of Dongguan.

some basic costs of the expressway because, first, they
are among the fundamental factors in transportation
planning and are likely to be factors considered during
the early planning stages and, second, for the purpose
of exploring the methodology of coupling simulation
and optimization, simplifying the scenario and focus-
ing on those factors that can be easily represented by
available data and handled by the current GIS and re-
mote sensing technologies seems to be a reasonable
strategy.

Figure 2 displays the specific variables used to gen-
erate the estimates of the service coverage and cost.
The service coverage was estimated from the industrial
land use distribution, which was provided by the CA
simulation. The empirical land use changes that will
be used as the dependent in the CA model calibration
were identified by comparing the land use data lay-
ers for 2004 and 2007. These two land use layers were
created through visual interpretation and manual de-
lineation to the 0.61 m-resolution QuickBird satellite
images in 2004 and 2007. Among all land use classes,
the industrial land use is the one most important to

this study. Thanks to its unique shape and textural
information in the high-resolution images, this class
can be clearly separated from other classes. Specifically,
manufacturing buildings have large square shapes and
a low-density distribution, whereas residential build-
ings are much smaller in size and have a high density
(Figure 3). The data of the independents in the CA
model calibration include the layers of main roads, ex-
pressways, railways, town centers, and urban district
centers.

The development cost was estimated based on land
use types and slope. In the land use aspect, for exam-
ple, the average development cost of road construction
in urban areas is much higher than that in rural ar-
eas (O’Flaherty 1967), and the cost in the water class
is much higher than those in other land use classes
because of the construction of bridges. In this study,
we used a lookup table to translate land use type and
slope gradient into their corresponding unit develop-
ment costs at a cell. This lookup table was defined
according to O’Flaherty’s studies and the local expe-
riences from the experts of the Planning Department
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Coupling Simulation and Optimization for Planning in a Fast-Developing Area 1039

Figure 2. Spatial variables prepared
from geographical information systems
and remote sensing: (A) Industrial land
use, (B) slope, and (C) various kinds of
roads.

of Dongguan (Tables 1 and 2). The slope layer was re-
trieved from the digital elevation model data provided
by the planning department. Figures 4A and 4B show
the two cost surfaces generated in this way. The overall

development cost was calculated as a simple summation
of these two costs (Figure 4C).

The total size of the study area is 4,067.75 km2.
The computation burden would be unbearable if we
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1040 Li et al.

Figure 3. Provision of transport service
to the rapidly growing rural industry
in the Pearl River Delta. (Color figure
available online.)

directly sent the raster layers at their original resolutions
into the optimization model. To limit the computation
to a reasonable level, we converted the resolutions
of all the raster layers to 250 m. Under this resolu-
tion, there are a total of 307 × 212 pixels in each
layer.

Model Implementation and Results

In this study, we chose to use the revised logistic
CA model proposed by Li, Yang, and Liu (2008) to
simulate the land use changes. The first step of this
simulation was to calibrate the CA model using histor-
ical data. The empirical information about the indus-
trial land use changes was obtained from the land use
data of 2004 and 2007 (interpreted from the QuickBird
images). With this empirical information as the depen-
dent variable, the transition rules of CA were derived
(i.e., the CA model is calibrated) through the logistic
regression (Wu 2002; Li, Yang, and Liu 2008), using a
series of proximity variables as independent variables,

Table 1. Unit costs of road construction for various types
of land use

Land use
type Water Urban Orchard

Agricultural
land Forest Other Grass

Unit cost 6 5 2 2 2 2 2

including the distances to main roads, expressways, rail-
ways, town centers, and urban district centers. Equation
2 was then specified as follows:

zt
i j

= 0.871−0.48xmainroad−0.06xexpressway−0.005xrailway

− 0.02xtowncenter + 0.01xdistrictcenter (11)

where xmainroads, xexpressway, xrailways, xtowncenter, and
xdistrictcenter represent the distances to main roads, ex-
pressways, railways, town centers, and urban district
centers, respectively.

The calibrated CA model was validated by using a
part of the training data. The validation was carried
out by using a total of 10,961 cells with known land
use changes from the classified remote sensing data that
have not been included in establishing this model. The
selection of these validating sites was based on the strat-
ified random sampling strategy (Li, Yang, and Liu 2008).
The total accuracy was 0.63 using these validation data.
The validated model was then used to simulate the dy-
namics of industrial land based on the historical trend.
When estimating the service coverage, instead of sim-
ply using a binary value to indicate whether a cell is
“industrial” or not, we chose to use the industrial out-
put value at each cell. The original industrial output
value is a statistic compiled at the town level by the
local government to quantify industrial activities. To
get this value at each cell, the town-level value was
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Coupling Simulation and Optimization for Planning in a Fast-Developing Area 1041

Table 2. Unit costs of road construction for various types of slope

Slope (degree) <4 4–10 10–16 16–22 22–28 28–34 34–40 40–45 >45

Unit cost 2 2.5 3 3.5 4 4.5 5 5.5 6

divided by the number of simulated industrial cells
within the town. A quantified industrial activity mea-
surement like the industrial output value should be
more accurate in representing the local transport de-

Figure 4. Cost surfaces related to land use and slope: (A) Cost
surface from land use, (B) cost surface from slope, and (C) combined
cost surface from land use and slope.

mand than the simple binary value and in turn should
make the simulation more useful to the later path opti-
mization for the planned expressway. We also used the
historical town-level industrial output values to estab-
lish linear regression models by which the values for
the coming years could be extrapolated. Although the
immediate output from the simulation for a year was
still binary (i.e., it only showed whether a cell would be
an industrial one or not), with the predicted town-level
industrial output values of that year, the simulation re-
sult could be quantified through disaggregation. The
industrial output values of each town in 2002, 2003,
2004, 2005, 2006, and 2007 were obtained from the
Statistical Yearbook of Dongguan.

To prioritize the transportation demands that are
relatively distant from the existing road networks, we
adjusted the industrial output value using a distance
decay function as follows:

Vi j ′ = Vi j (1 − e−0.0003r ) (12)

where Vij is the original industrial output value at cell
(i, j ), V ′ is the adjusted value, and r (in meters) is the
distance between (i, j ) and the closest existing road.
The effect of this adjustment is shown in Figure 5.

We simulated the distribution of industrial land use
in 2008, 2011, 2014, 2017, and 2020. Based on the
simulation results, for each of the years we generated
both original and adjusted industrial output value sur-
faces (Figure 6), as well as the cost surface. These raster
surfaces were then sent into the optimization module
of the GeoSOS to identify the optimal path for the
planned expressway.

In this study, we revised the conventional
pheromone updating strategy in ACO to incorporate
both the cost and service coverage. Specifically, Equa-
tion 9 was revised as follows (adapted from Li et al.
2009a):

�τ k(t) =
Q

∑
R(k)

Vij(t)

Ck(t)
(13)

where �τ k(t) is the intensity of pheromone on the trail
left by ant k when it finishes the trip from the origin

D
ow

nl
oa

de
d 

by
 [

D
ar

tm
ou

th
 C

ol
le

ge
 L

ib
ra

ry
] 

at
 1

3:
03

 1
8 

A
ug

us
t 2

01
1 



1042 Li et al.

Figure 5. Disaggregating industrial out-
put values into industrial land use
parcels: (A) Industrial output and (B)
adjusted industrial output.

to the destination in iteration t ;
∑

R(k) Vij(t) is the to-
tal industrial output value (either original or adjusted)
within the buffer distance R to the trail left by ant k
in iteration t, that is, the service coverage of the trail;
Ck(t) is the total cost of the trail; and Q, as in Equation
9, is a user-specified constant.

Based on Equations 12 and 13, we considered four dif-
ferent scenarios for the optimization. The first scenario
is the most basic, in which V is the original industrial
output value and C is the total length of the path. This
scenario does not consider the influences of the exist-
ing road network and the development cost (measured
based on land use and slope). In other words, it assumes
that there are no existing roads and all the cells have
the same development cost. The second scenario differs
from the first by using the adjusted industrial output

value to take into account the existing road networks.
The third scenario differs from the first by incorporat-
ing the development cost. In this scenario, each cell has
its unique development cost determined by local land
use and slope (Figure 4), and the total cost of a path
thus consists of both travel cost and development cost.
The fourth scenario is a combination of the second and
the third scenarios. It is the most sophisticated and ar-
guably the most realistic of the four. As an example,
Figure 7 shows the optimization results for the four sce-
narios based on the simulation results for 2008. Table 3
lists the parameters of the ACO model and their values
used in this case study. The first five parameters were
from the classical ACO and their values were set fol-
lowing Dorigo, Maniezzo, and Colorni (1996). The last
parameter, R, which was first introduced into ACO by

D
ow

nl
oa

de
d 

by
 [

D
ar

tm
ou

th
 C

ol
le

ge
 L

ib
ra

ry
] 

at
 1

3:
03

 1
8 

A
ug

us
t 2

01
1 
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Figure 6. Simulated adjusted patterns
of industrial output value in 2008, 2011,
2014, 2017, and 2020.

Li, He, and Liu (2009a), is the buffer distance to de-
fine the neighborhood around the path within which
the service is available (but declines as the distance
increases).

We evaluated the optimality of a generated path at
one time point using its utility, which is calculated as
follows:

U =
∑
R

Vi j

C
(14)

Basically, the utility is the ratio between the service
coverage and the total cost of the path. Note that Equa-
tions 13 and 14 are based on the same idea. The only
difference is that Equation 13 is about a trail explored
by an ant, and Equation 14 is about the final identified
optimal path.

We evaluated the overall optimality of an identified
path for the entire period under concern using the ac-
cumulative utility, which is a summation of the path’s
utilities for all the simulation results within the period:

UAccum =
n∑

y=1

Uy (15)

In our specific case, Uy is the utility of the path for year
y and n is total number of years for which the land use
changes have been simulated.

We implemented both the piecewise and merging
strategies described earlier for the optimization to uti-
lize the simulation results. For the piecewise strategy,
we performed optimization over the simulation results
of each of the five years under simulation (2008, 2011,
2014, 2017, and 2020). We then calculated the utility
value of each of the five paths for each of the five years;

that is, each path received five utility values. The five
utility values were then summed up to get the accu-
mulated utility value of the path for the entire study
period. For the merging strategy, we first integrated the
simulated industrial output values of the five years and
then performed the ACO optimization over the result-
ing merged surface. In this study, we merged the simu-
lation results of the five years through simple cell-wise
summation. We then, as with the piecewise strategy,
calculated the utility of the identified optimal path for
each of the five years and summed up the five values to
obtain the accumulative utility value.

Figure 8A and Table 4 show the optimization re-
sults generated using the two strategies for the fourth
scenario, the most sophisticated of the four scenarios
tested, which involves both the existing road network
and the spatial variation of development cost. In each
column of Table 4, the highest yearly utility value oc-
curs at the diagonal position of the table. For example,
Path 2008 has the highest utility value for the simula-
tion results for year 2008, compared with other paths’
utility values for this year. This indicates that the op-
timization is sensitive to different simulated patterns
and among all the identified paths the one generated
based on one pattern is indeed the optimal one for that
specific pattern. In each row of Table 4, the utility val-
ues monotonically increase over the period and this
trend is consistent for all the paths. This is because the

Table 3. Parameters used in this ant colony optimization
path-covering model

Iteration Ants α β ρ R

2,000 20 2 2 0.1 20
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1044 Li et al.

Figure 7. Four scenarios of path opti-
mization based on the industrial output
value in 2008: (A) Scenario 1, (B) Sce-
nario 2, (C) Scenario 3, and (D) Sce-
nario 4.

simulation predicts that from year 2008 to year 2020 the
industrial land use, as well as the associated industrial
activities, in this area will experience rapid growth. As
a result, the absolute transportation demand falling un-
der the service coverage of the expressway will increase
over the period. This understanding helps correctly in-
terpret the values in Table 4. For example, this explains
why it does not make sense to state that Path 2008
becomes more optimal in 2011 than in 2008, albeit
the utility value in 2011 is 19.81 and in 2008 is 15.42.
The last column of Table 4 shows the accumulative
utility value of each path. The accumulative value is
useful when the planner wants to evaluate the optimal-

ity of a path for a given period if the expressway is to
be built at the beginning of the period. For example,
although Path 2017 is generated based on the simula-
tion result of 2017, it could still be built in 2008 and
have an accumulative utility value of 154.03 over the
period from 2008 to 2020. Among the five paths iden-
tified using the piecewise strategy, the one based on the
simulation results for 2017 (Path 2017) has the highest
accumulative utility value and thus is considered to be
the best.

The bottom row of Table 4 shows the utility values
of the path generated using the merging strategy (Path-
Merge). Its performance in 2008 and 2011 is slightly

Table 4. Accumulative utility values based on the simulated patterns of industrial output value (V)
for various years (106 RMB/km)

Simulated patterns of industrial output value (V)

Optimization V 2008 V 2011 V 2014 V 2017 V 2020 Accumulative

Path 2008 15.42 19.81 25.83 34.12 45.15 140.33
Path 2011 15.23 20.21 26.96 36.81 50.26 149.47
Path 2014 14.67 19.88 27.36 38.12 53.46 153.48
Path 2017 13.32 18.75 26.85 38.87 56.24 154.03
Path 2020 12.15 17.70 26.08 38.56 57.04 151.53
Path Merge 14.06 19.39 27.21 38.64 55.42 154.72
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Coupling Simulation and Optimization for Planning in a Fast-Developing Area 1045

Figure 8. Optimal paths identified by
coupling with urban simulation: (A)
Optimal paths based on urban simula-
tion and (B) identification of the maxi-
mum accumulative utility. (Color figure
available online.)

poorer than the corresponding paths generated using
the piecewise strategy (14.06 vs. 15.42 in 2008 and
19.39 vs. 19.81 in 2011) but is significantly better in
the latter three years, especially in 2020 (55.42 vs.
45.15). Its accumulative utility value is greater than
that of Path 2017 (154.72 vs. 154.03), the best of the
five piecewise-strategy paths, indicating that the merg-
ing strategy could be advantageous over the piecewise
strategy (Figure 8B).

Another important issue revealed by the data in
Table 4 is that among all the identified paths the one
based on the simulation results for 2008 has the lowest
accumulative utility value, which means it is the least
optimal path if we are considering the entire period
from 2008 to 2020. Among all of the simulation results,
the ones for 2008 are closest to the current situation,
and this confirms one of the major suppositions that

motivate this study: An optimization that is based on
the current situation and assumes it to be static could
have a poor performance in a fast developing region.

Conclusion

In this article we presented a methodological and
technical exploration of coupling simulation with op-
timization to serve regional or urban planning in a fast
developing region. In the simulation aspect, we chose
to use the widely studied CA to simulate and predict
land use changes. In the optimization aspect, we im-
plemented a raster-based ACO method to identify the
optimal path running across a real-world landscape sur-
face. We developed two different strategies (piecewise
and merging) for the ACO-based optimization to use
the results of the CA-based simulation as inputs and
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1046 Li et al.

applied the integrated system to a task of identifying
optimal path for a planned expressway in Dongguan
City, which is located in one of the fastest develop-
ing regions of China. In the past three decades, the
area currently enclosed by the administrative bound-
ary of the city has experienced a drastic transition from
a largely rural area to an international manufacturing
center. A major supposition that motivated this study is
that in such an area the optimization in planning (e.g.,
identifying the optimal path for a planned expressway)
might not be able to well serve its purpose if it assumes
static land uses, as is done in most existing optimization
models.

Our case study has empirically confirmed the preced-
ing supposition and suggested that coupling simulation
with optimization can considerably improve the opti-
mality in planning. In our case study, the path identified
based on the land use pattern of year 2008—the pattern
that is closest to the current situation and thus the path
that can be considered as a result from a noncoupling
approach—has the lowest optimality value (measured
by the accumulative utility) over the entire period un-
der concern, compared with the other paths that take
into account predictions for future years in one way or
the other. Among all paths, the one generated with
the merging strategy that combines simulation results
of all the years under consideration turned out to have
the highest optimality value over the entire period, al-
though it might not always be the most optimal one for
a specific single year. Particularly, in terms of the accu-
mulative utility, the path generated with the merging
strategy shows an improvement of 10.3 percent (154.72
vs. 140.33), when compared with the one from the
noncoupling approach (i.e., the path based on the sim-
ulation results for year 2008). Between the two coupling
strategies, in most cases the merging strategy is notice-
ably better than the piecewise one.

Real-world transportation planning can be very com-
plex in the context of selecting an expressway for freight
transportation. This proposed raster model did not in-
clude the distribution centers and warehouses in the
path optimization because of the lack of data. Our raster
method is for solving the “shortest path” problem but
not the “tour problem”; that is, the method is not forc-
ing the path to go through any given locations. On the
tour problem, a raster method might be disadvantageous
when compared with a vector method, and this is a
topic on our future research agenda. Actually, we would
treat distribution centers and warehouses the same as
industrial facilities; that is, a path covering them would
receive high utility values if the data are available. A

raster method is advantageous in a situation that (1)
besides the origin and the destination, the path doesn’t
“have to” go through any other locations; (2) the path
needs to run through a continuously varying landscape;
and (3) the path is not restricted to existing networks.

In this study we worked on specific types of simu-
lation and optimization (CA and ACO) and applied
the integrated system to a specific planning task—
identifying the optimal path for an expressway—it
is clear that this approach can be expanded to other
methods and applications. Indeed, a particular goal
in our plan of further developing the GeoSOS is to
incorporate more simulation and optimization methods
so as to improve and expand its applicability. For
example, it is within our immediate research interest
to test the performance of agent-based modeling
(ABM), another type of bottom-up approach, in an
optimization-oriented planning application. ABM is
effective when individual-level information is avail-
able and is considered to be flexible and intuitive for
modeling certain geographical phenomena in which
the accumulated impact of individual decisions leads to
human-induced environmental changes (Parker et al.
2003; Li and Liu 2007). ABM is good at dealing with
complex systems involving both social and natural fac-
tors (Torrens and Benenson 2005; Bennett and Tang
2006; Manson 2006; Torrens 2006; O’Sullivan 2008).
Particularly in modeling land use dynamics, ABM
is advantageous in incorporating various techniques,
such as sample surveys, participant observation, field
and laboratory experiments, companion modeling, and
GIS and remotely sensed data (Robinson et al. 2007).

Another item on our future agenda is to expand the
optimization functionality of the GeoSOS from path
finding to facility siting and area optimization. These
optimization tasks might use different optimization
models and thus might require different considerations
and techniques to be integrated with geo-simulations.

We argue that the idea of coupling simulation with
optimization is generally meaningful to many geograph-
ical applications, and there is great potential for re-
search in this direction. Our work could serve as an
exploration to a new way of using GIS and spatial anal-
ysis in planning. More broadly, thanks to the complex
and dynamic processes and relationships involved in
environmental modeling, resource management, and
spatial planning, GIS needs to go beyond the basic
analytical capability and static data model used in
most current commercial GIS packages. For almost two
decades it has been noted that the data models and
analysis methods provided by GIS are simply not rich
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Coupling Simulation and Optimization for Planning in a Fast-Developing Area 1047

enough in geographical concepts and understanding
(Gahegan 1999). Moreover, it seems clear that GIS
needs a strong scientific and intellectual component if
they are to be any more than a commercial phenomenon
(Goodchild 1992). Particularly, GIS lack the capabil-
ity of simulating and analyzing the phenomena of self-
organization, phase transition, and bifurcations (Batty
and Longley 1994). Nowadays, this problem becomes
only more obvious and urgent (An et al. 2005), and
to address it is the aim of this study and its subsequent
work.
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