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a b s t r a c t

Land-cover change has significant impacts on regional carbon dynamics. Understanding the carbon
consequences of land-cover change is necessary for decision makers to address the issues of carbon
reduction and climate change mitigation. Optical remote sensing images have been widely used for
detecting regional land-cover change. However, it is difficult to acquire desirable images for regions that
are frequently affected by cloudy and rainy weather. In this study, we proposed an approach to deal with
this problem by integrating moderate-resolution imaging spectroradiometer (MODIS) and Landsat im-
ages based on the mixed-label analysis (MLA) model. We tested this model in Guangdong Province, a fast
developing sub-tropical region in China, to derive the provincial land-cover data for the analysis of land-
cover change between 2000 and 2009 and its impacts on regional carbon dynamics. Results show that
forest land decreased by 3.03%, while built-up area rapidly expanded by 73.01% from 2000 to 2009. The
regional vegetation carbon sink declined by 2.6%, whereas the regional carbon emissions increased by
more than 100% due to the fast urbanization and economic development. The regional vegetation carbon
sink can only offset 4.1% of total carbon emissions in 2009, far below the national level (about 7.0e7.7%)
at the same period. Future efforts to improve the regional carbon budget should focus more on the
control of land development and the advance of energy efficiency.

� 2013 Elsevier Ltd. All rights reserved.

Introduction

Human-driven land-cover change has profound impacts on the
earth’s ecosystems. A better understanding of the dynamics of
land-cover change is fundamental for research on global environ-
mental change and sustainability (Turner, Lambin, & Reenberg,
2007). Land-cover change can alter the regional patterns of car-
bon sink/source and further affect the global carbon cycle (Liu,
Loveland, & Kurtz, 2004). The earth’s terrestrial ecosystems play a
key role in global carbon sink. It is estimated that terrestrial eco-
systems have absorbed about 25% of the carbon emissions caused
by human activities (Canadell et al., 2007). The world’s urbanized

areas, which are experiencing dramatic land-cover change,
consumemost of the global energy and become themajor source of
carbon emissions (Hutyra, Yoon, Hepinstall-Cymerman, & Alberti,
2011). The annual fluxes of carbon into (carbon sink) and out
(carbon emissions) of a region is usually referred to as regional
carbon budget (Potter, 2010). Assessing the impacts of land-cover
change on regional carbon budget is of great importance for
climate change mitigation and associated policy making, especially
for those fast developing areas in the world.

Remote sensing has been widely used for analyzing regional
land-cover change and its carbon consequences (Evrendilek et al.,
2011; Hutyra et al., 2011; Latifovic, Zhu, Cihlar, Giri, & Olthof,
2004). Among the sources of optical images, the Landsat series
(MSS, TM, and ETMþ) are most frequently used because of their
global coverage, long time span (more than 30 years), and user-
community familiarity in terms of image processing and analysis
(Redo & Millington, 2011). The relatively long revisit time (about 16
days) of the Landsat satellites, however, makes it difficult to acquire
good-quality data in the areas of cloudy and rainy weather. This
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problem may become more severe if the application requires
multiple scenes of images for the same date/season. Leckie (1990)
found that in some humid regions of Canada, the chance of
acquiring cloudless Landsat images even for a year is less than 10%.
By contrast, images produced by the moderate-resolution imaging
spectroradiometer (MODIS) have a wider single-scene coverage
and shorter revisit time (1 day). Such advantages increase the
possibility of acquiring cloud-free data for land-cover mapping in
large areas (Friedl et al., 2002). The major drawback of MODIS
images is their low spatial resolution, which to some extent limits
the accuracy of land-cover classification (Wessels et al., 2004). It is
expected that the integration of MODIS and Landsat images can
provide a better land-cover classification for large and rainy areas.

The integration of MODIS and Landsat images for land-cover
classification can be fulfilled in two ways. The first one is to
generate a new image with MODIS’s temporal resolution and
Landsat’s 30-m spatial resolution through image fusion models,
such as the spatial and temporal adaptive reflectance fusion model
(STARFM) proposed by Gao, Masek, Schwaller, and Hall (2006). This
model is very useful for applications that require images with both
high temporal and spatial resolution. However, the accuracy of this
model might decrease if high spatial heterogeneity exists, or sig-
nificant land-cover change occurs on the ground (Hilker et al.,
2009). The second way of image integration is to collect high-
quality training samples from Landsat images to feed the models
for the classification of MODIS images. MODIS images have a wide
areal coverage, which increases the difficulty of collecting high-
quality training samples for classification. In fact, Landsat images
can greatly facilitate the sample collection procedure. For instance,
Sulla-Menashe et al. (2011) established the training sites for the
classification of MODIS images through the manual interpretation
of Landsat images. Redo and Millington (2011) also considered
Landsat images as an important complementary data source for the
classification of MODIS images.

If the second way is adopted, there are still problems on how to
effectively embed the information from Landsat into the model to

classify MODIS images as the spatial resolutions of these two image
sources are far too different. Many models for the classification of
MODIS images are developed based on the decision tree algorithm
or its variations. These models are referred to as hard classification
models, because they assume that all unclassified pixels are pure
and only belong to (or are labeled as) one of the given classes/labels
(Foody, 1997). Apparently this assumption is invalid for MODIS
images as they usually have a lot of mixed-pixels due to the coarse
spatial resolution. It is very likely that a pixel on MODIS images can
contain more than just one land-cover type. Actually, the perfor-
mance of hard classification models is rather limited when classi-
fying MODIS images because of the contradiction between the
assumption of pure-pixel and the existence of mixed-pixels on
MODIS images. Moreover, as we will illustrate in our classification
experiments (Section 4.1), hard classification models cannot
effectively utilize the complementary information gained from
Landsat images.

We alleviated such problem based on a recently developed
mixed-label analysis (MLA) model (Liu, Li, & Zhang, 2010). This
model belongs to the group of soft classification models, which
allows for multiple and partial class membership properties of
mixed-pixels (Foody, 2000). The MLA model employs a k-nearest
neighbors (k-nn) algorithm to handle the complicated relationships
between the land-cover composition and the observed spectra for
mixed-pixels. Thus, the MLA model is more suitable to use than
conventional hard classification models for MODIS images in terms
of dealing with the mixed-pixel problem.

We selected Guangdong Province, a fast developing sub-tropical
region in southern China, as the case study area. The large area of
Guangdong is such that twelve scenes of Landsat images should be
involved for covering the whole province. However, owing to the
cloudy and rainy weather in Guangdong, it is very difficult to find
all the overpassed Landsat images to be cloudless on similar
acquisition dates. By contrast, only a single scene of MODIS image
can cover the entire study area. The daily revisit time of MODIS
images also increase the chance of acquiring cloudless data.

Fig. 1. Land-cover classification using the MLA model.
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Therefore, we used the MLA model to integrate Landsat and MODIS
images for the derivation of land-cover information.

Based on the derived provincial land-cover data, we also
explored the impacts of land-cover change on the carbon budget of
Guangdong. Recently Guangdong becomes the most populous
province and the biggest economy among all provincial level di-
visions in China (W. Wang, Kuang, & Huang, 2011). Rapid land-
cover change in Guangdong, particularly in the form of urban
expansion, has been reported by many researchers (Li & Yeh, 2004;
Seto et al., 2002; Shen,Wong, & Feng, 2002). The rapid urbanization
causes the suppression of natural vegetation and the degradation of
natural ecosystems (Lin et al., 2009; Liu, Li, Shi, & Wang, 2008; Sun
et al., 2011). Additionally, the rapid urbanization also gives rise to
the problems of increased energy consumption and carbon emis-
sions (Chen, Li, Zheng, Guan, & Liu, 2011; Dhakal, 2009). Now
Guangdong is the largest energy consumer and carbon emitter in
China, and hence under a great pressure for achieving the goal of
carbon reduction (Wang et al., 2011).

The procedures of our analysis on regional land-cover change
and carbon budget are as follows: First, the land-cover data of
Guangdong in 2000 and 2009were produced by integratingMODIS
and Landsat images through the MLA model. Second, the vegeta-
tion carbon sink was estimated based on the derived land-cover
data; the carbon emissions were also calculated using the official
statistical data. Finally, these results were used to evaluate the in-
fluences of land-cover change on regional carbon budget.

Methodology

Fig. 1 demonstrates the procedures of land-cover classification
using the MLA model. First, pixel samples were randomly selected
for the MODIS images (1500 samples for each year’s MODIS image).
Second, these samples were manually interpreted based on the
available Landsat images to determine the land-cover types
(including water, broad-leaved forest, coniferous forest, farmland,
built-up area, bareland and shrubland) and their areal proportions
within each pixel sample. Third, the pixel samples were divided
into two groups: one was used to establish the instance library
required by the MLA model, while the other was served as the test
data. Finally, the MLAmodel was implemented for the classification
of MODIS images. These results were used to analyze the impacts of
land-cover change on regional carbon budget.

Mixed-label analysis (MLA) model

In the MLA model, a label corresponds to a specific land-cover
type. The number of labels is finite, which can be denoted as C. A
pixel i is represented as xi ¼ ða1i ;.; ani Þ; where ani is the nth feature
of pixel i. The proportion of each label (land-cover type) in pixel i is
expressed as Yi ¼ ðp1i ;.; pcj Þ; where pci is the areal proportion of
the cth label, and

P
pci ¼ 1. Yi can be determined through the

following equation:

Yi ¼ f ðxiÞ þ ui; i ¼ 1;.;m (1)

where ui is the random error term and m is the number of image
pixels.

The function of f(xi) can be established using the k-nearest
neighbors (k-nn) algorithm: First, the distances in feature space
were calculated for the unclassified pixel i and all the known in-
stances (those samples in the instance library). The k nearest
neighbors can then be determined based on the calculated dis-
tances. Second, the weights for each neighbor were calculated by
converting the distances using the transition function. Finally, the
land-cover proportions of pixel i (i.e., Yi) were solved through the
weighted sum of the land-cover proportions of each selected
neighbor.

Specifically, re-denote the k-nn-based f(xi) as bf mðxÞ. Given a set
of instances T ¼ {(x1, Y1), (x2, Y2), ., (xm, Ym)}, bf mðxÞcan be
expressed as the following function:

bf mðxÞ ¼
Xm
j¼1

Wjðx1; x2; :::; xmÞYj (2)

where Wj(x1, x2, ., xm) is a weighted function that evaluates the
contribution from instance (xj, Yj) for estimating bf mðxÞ.

The weighted function should also meet the following
conditions:

Wjðx1; x2; :::; xmÞ � 0
Xm
j¼1

Wjðx1; x2; :::; xmÞ ¼ 1 (3)

The weights of each instance were then calculated using the
following equation:

di ¼ dðxi; xÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn
q¼1

�
aqi � aq

�2vuut (4)

where aqi and aq are the qth feature of pixel i and the compared
instance, while n is the number of feature.

After the calculation of the distances between pixel i and all
instances, the k nearest neighbors can be determined in terms of
shortest distances. Then the weighted functionWj(x1, x2,., xm) can
be formulated as follows:

Wjðx1; x2; :::; xmÞ ¼ e�djPk
j¼1 e

�dj
(5)

where k is the number of nearest neighbors.
After the weights of each neighbor were specified, the land-

cover proportions of the unclassified pixel i can be determined by
summing all the weighted land-cover proportions of the k nearest
neighbors. To make it clearer, we provide an example in Fig. 2. It
assumes that there are a total of three land-cover types (C ¼ 3) and
three nearest neighbors (k ¼ 3). If the weights of these three
nearest neighbors are w1, w2, and w3, respectively, then the areal
proportion of the first land-cover type for an inquiring pixel i is
p1i ¼ p11 �w1 þ p12 �w2 þ p13 �w3. The second and the third land-
cover types of this pixel can be calculated in the same manner.

The indicator of root-mean-square-error (RMSE) is used to
evaluate the classification errors. The RMSE of the ith land-cover
type can be calculated as follows:

Fig. 2. Determining the land-cover proportions of an unclassified pixel using the MLA model (k ¼ 3).
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RMSEi ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1=NÞ

XN
j¼1

ðpi � bpiÞ2
vuut (6)

where RMSEi is the RMSE of land-cover type i, while N is the
number of pixels; pi and bpirepresent the derived and actual pro-
portions of the ith land-cover type, respectively. The overall clas-
sification error is the mean of all RMSEi:

RMSEoverall ¼
1
C

XC
i¼1

RMSEi (7)

Estimating the regional carbon budget

We used carbon emissions and vegetation carbon sink to
represent the regional carbon budget. Generally, there are many
sources of carbon emissions, such as fossil fuels combustion,
cement production, and biological respiration, etc. Soil carbon is
the largest carbon pool in the world, but it also can become a car-
bon source under some conditions, such as fire, drainage and
grazing that can cause the release of soil organic matters. However,
recent studies reveal that the soil carbon in Guangdong is not a
carbon source as the soil carbon is steadily increasing over the last
two decades (Xie et al., 2007; Yu, Huang, & Zhang, 2012). Thus, we
did not consider soil as a carbon source in this study. At present,
fossil fuels consumption and cement production are the prime
carbon emissions sources in Guangdong (Wang, Zhu, Liu, & Ma,
2010). Therefore, we took into account these two sources for
calculating the carbon emissions of Guangdong. Specifically, the
carbon emissions caused by energy consumption Ce,fossil was
calculated using the following equation (IPCC, 2006):

Ce;fossil ¼
X
i

Ei � Vi � ci (8)

where Ei is the physical consumption of fuel type i; Vi and ci are the
calorific value carbon emission factor of fuel type i. The calorific
values and carbon emission factors of different fuel types (Dhakal,
2009) are shown in Table 1.

Cement production also can generate a large amount of carbon
emissions throughcarbonatedegradation. The carbonemissions from
cement production Ce,cement was calculated as follows (IPCC, 2006):

Ce;cement ¼ q� c� eclc (9)

where q is the actual cement production (i.e., regional production
plus cement importation minus cement exportation); c is the
proportion of comprehensive clinker (set as 0.75 in accordance
with (Wang et al., 2010)), and eclc is the clinker carbon emission
factor, set as 0.52 (t-C/t) (IPCC, 2006). The total regional carbon
emissions is the sum of Ce,fossil and Ce,cement.

The vegetation carbon sink was calculated based on the
respective area and the carbon sink intensity of each vegetation
type:

Cs ¼
X

Ci;s ¼
X
j

Ai;j � vj (10)

where Cs is the total vegetation carbon sink, and Ci,s is the carbon
sink of pixel i; Ai,j is the area of vegetation type j, and vj is the carbon
sink intensity vegetation type j. We determined the carbon sink
intensity of each vegetation type based on previous related studies
(Chen, Xu, Li, Fu, & Yan, 2012; Fang, Guo, Piao, & Chen, 2007):
0.7559 (t-C/ha yr�1) for broad-leaved forest, 0.3662 (t-C/ha yr�1)
for coniferous forest, and 0.134 (t-C/ha yr�1) for shrubland. The
farmland ecosystem also can absorb some amount of atmospheric
carbon, but its contribution to regional carbon sink is not significant
because of the short harvest period of crops (Fang et al., 2007; Piao
et al., 2009). Therefore, the value of carbon sink intensity for
farmland was set to zero.

Study area and data

Guangdong Province is located in southern China, consisting of a
total of 21 cities. These cities can be divided into four groups ac-
cording to the cities’ geographical locations (see Fig. 3), namely east
flank cities, west flank cities, mountainous cities and the cities in
the Pearl River Delta. Chaozhou, Shantou, Jieyang and Shanwei are
east flank cities, while Zhanjiang, Maoming and Yangjiang are west
flank cities. Cities in the north of the province, including Qingyuan,
Shaoguan, Heyuan, Meizhou and Yunfu, are called mountainous
cities because they are within the mountainous area. The rest of the
cities, including Guangzhou, Foshan, Dongguan, Shenzhen,
Zhongshan, Zhuhai, Huizhou, Jiangmen and Zhaoqing, compose the
so-called Pearl River Delta region, which is the core economic re-
gion in Guangdong.

Guangdong is a typical humid sub-tropical area with annual
mean precipitation of 1300e2500 mm. The raining season usually
starts from April and ends around October. Cloudy days are
frequent even in winter. Such weather condition makes it difficult
to acquire cloud-free Landsat images. Fig. 3 shows the path/row
numbers of all overpassed Landsat TM/ETMþ images for Guang-
dong in December, 2009. It is almost impossible to find all the
overpassed Landsat images to be cloudless on similar acquisition
dates. The percentage cloud cover of the overpassed images in the
coast exceeds 40% on average, some even reaching 97%. The images
covering the northern inland area are of better quality, with the
percentage cloud cover of less than 20%. Thus, it is necessary to
combine Landsat and MODIS images to obtain a better land-cover
classification in Guangdong.

The MODIS and Landsat TM/ETMþ images were downloaded
from the U.S. Geological Survey Earth Resources Observation and

Table 1
Calorific values and carbon emission factors of different fuel types.

Type Calorific value
(KJ/kg, KJ/m3)

Carbon emission
factor (t-C/TJ)

Type Calorific value
(KJ/kg, KJ/m3)

Carbon emission
factor (t-C/TJ)

Raw coal 20,934 26.8 Kerosene 43,124 19.6
Secondary coal 26,377 26.8 Diesel oil 42,705 20.2
Other washed coal 8374 26.8 Fuel oil 41,868 21.1
Briquette coal 20,934 26.8 Liquefied petroleum gas 50,241 17.2
Coke 2847 29.5 Refinery gas 46,055 18.2
Coke oven gas 17,375 13 Natural gas 38,979 15.5
Other gas 5234 13 Other petroleum product 41,868 25.8
Crude oil 41,868 20 Other coking product 2847 29.5
Gasoline 43,124 20

Y. Chen et al. / Applied Geography 45 (2013) 10e21 13
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Science Center (http://glovis.usgs.gov/) and from the International
Scientific Data Service Platform (http://datamirror.csdb.cn/). Two
scenes of MODIS images were selected for the analysis in this study.
They are the 8-day composited product (MOD09A1) of surface
reflectance with a 500-m resolution. Their acquisition dates are
December 26, 2000 and December 3, 2009. Because of the serious
stripes, the fifth band of the selected MODIS images were aban-
doned during classification. Six scenes of 30-m Landsat TM/ETMþ
images were used for sample collection and classification valida-
tion. The selection of the Landsat TM/ETMþ images followed these
principles: the cloud cover should be as low as possible; the
selected images should contain all the land-cover categories; the
acquisition dates should be close to those of the selected MODIS
images. The path/row number and acquisition dates of the selected
Landsat TM/ETMþ images are: 120/44 (January 15, 2010), 121/044
(December 28, 2000), 121/43 (December 28, 2000), 122/044
(November 1, 2000 and November 2, 2009), and 122/43 (November
2, 2009). All of the downloaded MODIS and Landsat images had
already been geo-referenced by the data providers. These datawere
all re-projected into the Universal Transverse Mercator (UTM) co-
ordinate systems (zone 49N) using the WGS-84 (World Geodetic
System 1984) ellipsoid.

The socio-economic data were collected from Guangdong Sta-
tistical Yearbook (Statistics Bureau of Guangdong Province, 2001,
2010), including provincial and city populations, provincial and
city gross domestic products (GDP), and per capita GDP. The energy
data were obtained from the Guangdong Energy Balance Sheet
(Physical quantity) in China Energy Statistical Yearbook (2010).

Results and discussion

Implementation and validation of the MLA model

The parameter k (i.e., the number of neighbors) in Equation (5) is
a key factor that influences the performance of the MLA model.
Thus, we first repeatedly run the MLA model for several times to

find an appropriate value of k. As demonstrated by Fig. 4, the
classification error is inversely proportional to the value of k and
tends to stabilize after k reaches 10. Therefore, k was set to 10 for
subsequent applications. The results of the MLA model are shown
in Figs. 5 and 6. The overall RMSE is 0.204 for year 2000 and 0.197
for 2009 (Table 2).

The results of the MLA model were compared with those of the
frequently-used DT model e the model based on decision tree al-
gorithm (C4.0). Because the DTmodel is a hard classificationmodel,
a pixel-hardening procedure should be carried out for the MLA
model’s results before comparison. The hardening of a pixel means
to assign (only) one representative land-cover type to this pixel
based on the given land-cover composition. This can be determined
using the largest-area-rule, which means for any pixel, the land-
cover type with largest areal proportion will be selected and
assigned to this pixel as its label/class (Liu et al., 2010). This rule is
problematic if a pixel contains two or more land-cover types
with equal areal proportions. For instance, consider a pixel with
three land-cover types, each of which has the same areal

Fig. 3. The location of Guangdong Province, the path/row number and cloud cover of the overpassed Landsat TM/ETMþ images.

Fig. 4. The relationship between parameter k and RMSE.

Y. Chen et al. / Applied Geography 45 (2013) 10e2114
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proportion of 1/3. In this case, none of these three types can
become the “representative land-cover type” for this pixel. Thus,
we refined the hardening rules as follows: for any pixel, if there is a
land-cover type whose areal proportion exceeds 0.5, then the pixel
should be labeled as that land-cover type; if there is no any land-
cover type with a more-than-0.5 areal proportion, then this pixel
is labeled as a “mixed” type. Fig. 7(a) and (b) shows the hardened
results of the MLA model. The hardening procedure was also
implemented for the collected samples. The hardened samples
were then randomly divided into two groups: one was used to train
the DT model, whereas the other was treated as test data.

Table 3 shows the classification accuracies of the MLA model
and the DT model. The overall accuracies of the MLA model are
quite low (less than 70%) if it is implemented in a hard classification
manner. This is due to the contradiction between the core
assumption of hard classification (single choice of class) and the
existence of mixed-pixels on MODIS images. As a pixel on MODIS
images usually consists of multiple land-cover types, it is difficult to
assign an appropriate land-cover type for such a pixel.

Nevertheless, the overall accuracies of the MLA model are still
11%e14% higher than those of the DT model. This is because the
MLA model has better ability than the DT model to utilize the

information gained from Landsat images. TheMLAmodel considers
pixels as mixed rather than pure, and uses the k-nn algorithm to
effectively handle the complicated relationship between the land-
cover composition and the spectra. The rich information obtained
from Landsat images can support the MLA model to accurately
induce the land-cover composition of an unknown pixel on MODIS
images. However, the DT model intrinsically regards any pixels,
including the training samples, as pure ones. Therefore, the sam-
ples collected from Landsat images have to be hardened before-
hand. This may discard a large amount of complementary
information gained from Landsat images. Such information loss
will inevitably affect the training of the DTmodel. Moreover, the DT
model cannot capture the relationship between the land-cover
composition and the spectra of those mixed-pixels. This is re-
flected by the DT model’s extremely low classification accuracies of
“mixed” type, as shown in Table 3.

Land-cover change and regional carbon budget

Table 4 shows the areal change of each land-cover type between
2000 and 2009. The built-up area in Guangdong grew from
6239.89 km2 to 10,796.21 km2 (increased by 73.01%). Forest land

Fig. 5. Land-cover of Guangdong for year 2000 (‘Broad-leaved forest’ and ‘Coniferous forest’ were combined as ‘Forest’).

Y. Chen et al. / Applied Geography 45 (2013) 10e21 15
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(including broad-leaved and conifer forests) had the biggest areal
decrease among all land-cover types. However, the reduced area
(2952.02 km2) only accounted for 3.03% of the total forest land in
2000. Forest land remained as the largest land-cover type in 2009,
with a land coverage of approximately 53%. Water body also
reduced by 267.38 km2 due to the coastal reclamation activities and
the conversion of aquatic areas to built-up areas. The area of
farmland changed slightly with a small reduction of 254.63 km2,
which accounted for 1.11% of the total farmland area in 2000.

Fig. 7(c) shows the land conversion between 2000 and 2009
based on the hardened results of the MLA model. New built-up
areas were mainly concentrated in the center (the Pearl River

Delta) and the east flank of Guangdong. In these two regions,
farmland andwater body were the immediate land sources for new
built-up areas. However, a lot of forest land was converted into
farmland in the west flank and parts of the Pearl River Delta.
Therefore, the farmland loss due to urban expansion was partly
covered by reclaiming forest land. Moreover, some forest land in
the north of Guangdong was transformed into mixed land-cover
type. This aggravated the areal loss of forest land in Guangdong.

From late 1980s to 2000s, the built-up area in Guangdong grew
with an annual rate of around 8%e10% (Fan, Wang, & Wang, 2008;
Seto & Kaufmann, 2003). In the period of 2000e2009, the growth
rate decreased to 6.29% annually (Table 4), which was still a high
rate. The per capita built-up area at provincial level increased from
72.14 km2 to 112.02 km2 (Table 5), indicating a trend of urban
sprawl. Fig. 8(a) and (b) shows the per capita built-up area at city
level in 2000 and 2009. It can be found that cities in the east and
west flanks of Guangdong had lower per capita built-up area,
whereas cities in the center and the north had higher per capita
built-up area. Cities of Foshan, Jiangmen and Zhongshan, which had
the highest per capita built-up area, continued their rapid growing
trend in the past two decades (Fan et al., 2008; Li & Yeh, 2004).
Those mountainous cities, such as Shaoguan and Heyuan, also had

Fig. 6. Land-cover of Guangdong for year 2009 (‘Broad-leaved forest’ and ‘Coniferous forest’ were combined as ‘Forest’).

Table 2
The root-mean-square errors (RMSE) of the land-cover classifications produced by
the MLA model.

Year W BF CF FL BA BL SL Overall

2000 0.127 0.285 0.202 0.300 0.210 0.152 0.155 0.204
2009 0.153 0.263 0.146 0.304 0.199 0.131 0.185 0.197

Note: W ¼Water; BF ¼ Broad-leaved forest; CF ¼ Coniferous forest; FL ¼ Farmland;
BA ¼ Built-up area; BL ¼ Bareland; SL ¼ Shrubland.
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very high per capita built-up area,mainly because these cities are in
an early development stage and rely on heavy input of land re-
sources to make economic returns.

The provincial land-use efficiency, represented by the GDP of
per square kilometer of built-up area, improved from 172 million
yuan/km2 (z$27.61 million/km2) to 297 million yuan/km2

(z$47.67 million/km2) with an annual increase of 6.26% (Table 5),
nearly equal to the rate of urban expansion. The land-use effi-
ciencies are the highest in the coastal cities (e.g. Shanwei, Shenz-
hen, Guangzhou, Zhuhai, and Yangjiang) and gradually decrease
from these cities to the inland cities (e.g. Shaoguan, Qingyuan, and
Heyuan) (Fig. 8(c) and (d)). Surprisingly, the land-use efficiencies in

Foshan, Dongguan, and Huizhou are also below the provincial level.
Although these cities are most developed in the Guangdong, they
remain in a development stage of low land utilization level.

Impacts of land-cover change on regional carbon budget

Land-cover change has significant influences on regional carbon
budget. The change of vegetation type and quantity affects the
regional carbon sink. Urban expansion, economic development and
population growth in all give rise to the increase of regional carbon
emissions. In the following analysis, we further explore the impacts
of land-cover change on regional carbon budget in Guangdong.

Fig. 9(a) and (b) show the spatial distributions of vegetation
carbon sink in 2000 and 2009, respectively. The mountainous areas
in the north of Guangdong have very high carbon sink because of
the wide coverage of forest land, whereas the Pearl River Delta and

Fig. 7. (a)e(b) The hardened results of the MLA model’s classification; (c) Land-cover change in Guangdong Province between 2000 and 2009.

Table 3
Classification accuracies (%) of the MLA model and the DT model.

Year W BF CF FL CA BL SL M

MLA (Overall accuracy: 62.9% in year 2000; 65.1% in year 2009)
2000 72.7 72.5 64.2 64.2 62.0 52.2 69.2 45.8
2009 79.6 73.3 68.4 60.7 79.1 52.9 53.8 52.8
DT (Overall accuracy: 48.3% in year 2000; 53.4% in year 2009)
2000 78.3 65.0 31.9 45.9 65.4 46.2 39.1 14.6
2009 79.1 66.2 42.9 57.2 74.8 44.2 46.2 16.7

Note: W ¼Water; BF ¼ Broad-leaved forest; CF ¼ Coniferous forest; FL ¼ Farmland;
BA ¼ Built-up area; BL ¼ Bareland; SL ¼ Shrubland; M ¼ Mixed.

Table 4
Area (km2) of each land-cover type in Guangdong.

Year Water Forest Farmland Built-up area Bareland Shrubland

2000 7919.33 97,289.18 36,917.44 6239.89 8117.93 21,124.60
2009 7651.95 94,337.16 36,662.81 10,796.21 7271.7 20,888.54
Change �267.38 �2952.02 �254.63 4556.32 �846.23 �236.06
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the plains in the east and west flanks have much lower carbon sink
as their major land-cover types are farmland and shrubland.

As shown in Table 6, forest land contributed most of the carbon
sink in Guangdong (95.86% in 2000 and 95.89% in 2009). Owing to
the reduction of forest land, the vegetation carbon sink dropped
from 7.01 million t-C to 6.82 million t-C between 2000 and 2009.
Fig. 9(c) reveals that there was a notable decrease of carbon sink in
the mountainous area and the west flank due to the conversion of
forest land into farmland and other land-cover types (Fig. 7(c)). By
contrast, carbon sink increased in some small hilly areas near the
eastern border of the province because of the restoration of forest
land.

We also aggregated the change of carbon sink into city level to
showa clearer pattern (Fig. 9(d)). The highest increase of vegetation
carbon sink is found in the west flank cities, such as Zhanjiang,
Yanjiang and Jiangmen. There is also a slight increase of vegetation
carbon sink in the east flank cities (e.g. Chaozhou and Jieyang). The
most serious reduction of carbon sink is witnessed in the moun-
tainous cities (Zhaoqing, Qingyuan, Shaoguan, and Heyuan), even
though they still have abundant forest land.

Compared with the slight decrease of vegetation carbon sink,
there was an astonishing increase of carbon emissions between
2000 and 2009 (Table 7). The carbon emissions from energy con-
sumption in 2009 were 129.29 million t-C, more than double the
emissions in 2000. This is due to the undergoing fast industriali-
zation and economic development from 2000 to 2009. According to
the provincial statistics yearbook (Statistics Bureau of Guangdong

Province, 2010), 66.9% of the total provincial energy consumption
was spent in the secondary industry in 2009. The fossil-fuels-
dominant energy structure is another cause of the increased car-
bon emissions. Although the usage of total raw coal and crude oil
decreased from 87.2% to 72.3%, fossil fuels remained as the main
source of energy in 2009 (Statistics Bureau of Guangdong Province,
2010). The provincial energy demand is expected to accelerate as
the industrialization will continue in the future (Kuby, He, Trapido-
Lurie, & Moore, 2011). But the associated growth of carbon emis-
sions can somewhat be offset if the energy structure is improved,
such as increasing the use of hydropower, sunlight or nuclear
power.

The carbon emissions generated by cement production also
grew very fast (increased by approximately 71%) between 2000 and
2009 because of the rapid urbanization and related land con-
struction. The expansion of urban areas stimulates the demand of
cement for constructions of residential, industrial/commercial
buildings and other infrastructures. Although the share of carbon
emissions from cement production dropped to 23.2% in 2009, such
proportion still exceeded the national average of 7.2e12.0% (Wang
et al., 2010). Regarding that at present cement production in China
is still relatively inefficient, the problem of carbon emissions may
be exacerbated because of the growing demand of cement driven
by future urban expansion (Güneralp & Seto, 2012).

The energy efficiency was improved from 2000 to 2009, as
indicated by the declined carbon emissions per unit GDP (see
Table 8). However, such improvement was not large enough to
effectively stabilize the provincial carbon emissions (Table 7). The
per capita carbon emissions also increased almost 90% in this period
(from 0.92 t-C to 1.74 t-C, see Table 8). This is related to the growing
personal wealth over the last decade. Previous research demon-
strated that the increase of personal wealth encourages people to
change their life styles into the ones that aremore energy intensive,
such as the ownership of automobiles (Dieleman, Dijst, &
Burghouwt, 2002). Actually, the number of private cars can grow
even faster than the GDP in some cities of Guangdong (Y. Chen et al.,

Table 5
Statistics of built-up area in Guangdong in 2000 and 2009.

Year Coverage of the
province (%)

Per capital built-up
area (km2)

Land-use efficiency
(million yuan/km2)

2000 3.51 72.14 172 (z$27.61)
2009 6.08 112.02 297 (z$47.67)

Note: The GDP in 2009 was converted based on the price in 2000.

Fig. 8. Per capital built-up area and land-use efficiency for each city in Guangdong Province.
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2011). The recent provincial per capita carbon emissions are still
lower than those in developed countries such as USA (around 4.8 t-
C) or Japan (around 2.5 t-C). But it would become devastating if the
per capita emissions reach the similar levels of these countries
because of the large population in Guangdong. The carbon emis-
sions per square built-up area also increased by 22.8% from 2000 to
2009 (Table 8). In fact, as indicated by Güneralp and Seto (2012),
efforts have been made to reduce the demand of materials and en-
ergy for individual buildings in the cities of Guangdong, but the
gains in efficiencywereoutstrippedby the fast expansionof built-up
areas and hence failed to slow down the regional carbon emissions.

In year 2000, the vegetation carbon sink could offset 8.8% of
total carbon emissions of Guangdong. This level was just a little
lower than that of the East Asia region at the same period, in which
about 10.9% of the annual carbon emissions could be absorbed by
vegetation (Ito, 2008). However, the vegetation carbon sink of
Guangdong could only offset 4.1% of its total carbon emissions in
2009, far below the national level (approximately 7.0e7.7%) (Fang
et al., 2007; Wang et al., 2010). Ma and Wang (2011) believe that
Guangdong still has large space for afforestation and thus has high
potential for increasing the regional vegetation carbon sink. Ac-
cording to their forecasts, the cumulative amount of forest carbon
sink from 2005 to 2050 is 389.23 million t-C, i.e., 8.65 million t-
C yr�1 on average. Such level of annual forest carbon sink only
accounted 5.1% of the total carbon emissions in 2009. Therefore, it
is not enough to improve the regional carbon budget merely by
afforestation.

More measures should be taken with respect to the control of
land development as urban expansion have strong impacts on the
regional carbon budget. In China, land development is a crucial
factor to sustain domestic economic growth (Deng, Huang, Rozelle,
& Uchida, 2010). Local governments in some Chinese cities have also
realized the importance of regulating urban expansion for retaining
environmental quality and the sustainability of future development.
For instance, the cities of Dongguan and Shenzhen, which locate in
the Pearl River Delta, start to establish their ecological protection
areas to restrict urban sprawl (Li, Lao, Liu, & Chen, 2011). The im-
mediate benefit from these protection efforts is the conservation of
important ecological services, such as absorbing the atmospheric
carbon.Meanwhile, land development can also be controlled so that
the associated growth of resources demand (e.g. energy) might be
stabilized. In addition, promoting the compactness of urban forms
can effectively reduce urban energy consumption. This has been
confirmed by several empirical studies in American cities (National
Academy of Sciences of United States, 2009). Two recent researches
in Asian cities also suggest that fragmented and sprawled urban
forms consumemore energy than compact urban forms (Chen et al.,
2011; Makido, Dhakal, & Yamagata, 2012).

Conclusions

Our study has demonstrated the necessity of combining various
sources of satellite images to derive land-cover data for Guangdong

Fig. 9. The spatial distribution and the change of vegetation carbon sink in Guangdong from 2000 to 2009.

Table 6
Vegetation carbon sink of Guangdong in 2000 and 2009 (million t-C).

Year Forest carbon sink Shrubland carbon sink Total carbon sink

2000 6.72 0.29 7.01
2009 6.54 0.28 6.82
Change �0.18 �0.01 �0.19

Table 7
Carbon emissions of Guangdong in 2000 and 2009 (million t-C).

Year Carbon emission from
energy consumption

Carbon emission from
cement production

Total carbon
emission

2000 56.65 22.90 79.55
2009 129.29 39.11 168.40
Change 72.64 16.21 88.85
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Province, a large humid sub-tropical region in China. Cloudy and
rainy weather in Guangdong raises the difficulties of obtaining
cloudless Landsat images. It is almost impossible to acquire all the
cloudless overpassed Landsat images on similar dates because of
the relatively long revisit time of Landsat. MODIS images have
much shorter revisit frequency and hence become another image
source. We integrated MODIS images with available cloudless
Landsat images for land-cover classification based on the MLA
model. As a soft classification model, the MLA model is more
suitable for the classification of MODIS images because of its ability
to deal with mixed-pixels problem.

The analysis of land-cover change reveals that forest land in
Guangdong decreased by 3.03% from 2000 to 2009, while built-up
area rapidly expanded by 73.01% in the same period. Farmland was
the major land source for urban development during this period.
But the overall reduction of farmland was marginal because a
fraction of forest land was converted into farmland. At the pro-
vincial level, the land-use efficiency increased by 6.26% annually,
almost equal to the urban growth rate (6.29%). Due to the declined
vegetation area, the vegetation carbon sink decreased by 0.19
million t-C, which accounted for 2.6% of the carbon sink in 2000.
However, the total carbon emissions increased by more than 100%
from 2000 to 2009 because of the rapid urban development. The
vegetation carbon sink can only offset 4.1% of total carbon emis-
sions in 2009, far below the national level (around 7.0e7.7%).

In this study, we neglected the influences of soil carbon stocks
and soil respiration when estimating the regional carbon budget.
Recent studies found that the soil carbon stocks in Guangdong in-
crease by 1.17 million t-C annually (Xie et al., 2007), which is quite
small compared with the amount of carbon emissions
(168.40 million t-C in 2009). Thus, the estimated carbon budget
may not change a lot if soil carbon stocks and soil respiration are
taken into account in this study. Nevertheless, these sources will be
examined in our future study to provide a comprehensive pattern
of carbon budget in Guangdong. We will also explore the spatial
connections between urban expansion and regional carbon budget
in future study. Although empirical studies consistently reveal a
significant relationship between urban forms and urban carbon
emissions, the mechanism behind this relationship is rather com-
plex and needs further examination (National Academy of Sciences
of United States, 2009). Additionally, local governments of many
Chinese cities are aware of the importance of establishing policies
to adjust the structure of urban economy for stabilizing the energy
consumption (Dhakal, 2009). Thus, models will also be developed
to evaluate the potential impacts of such polices on urban devel-
opment and associated energy/carbon consequences.
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