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Delimiting urban growth boundaries (UGBs) has been generally regarded as a regulatory measure for controlling
chaotic urban expansion. There are increasing demands for delimiting urban growth boundaries in fast growing
regions in China. However, existing methods for delimiting UGBs mainly focus on intrinsic dynamic processes of
urban growth and ignore external planning interventions. Delimiting UGBs to restrain chaotic expansion and
conserve ecological areas is actually a spatial optimization problem. This study aims to develop an optimiza-
tion-based framework for delimiting optimal UGBs by incorporating dynamic processes and planning interven-
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Urban growth boundary tions into an ant colony optimization (ACO) algorithm. Local connectivity, total utility values and quantity
Land use planning assignment were integrated into the exchange mechanism to make ACO adaptive for the delimitation of UGBs.
Ant colony The core area of Changsha-Zhuzhou-Xiangtan urban agglomeration, a very fast growing area in Central China

Spatial optimization
Urban agglomeration

was selected as the case study area to validate the proposed model. UGBs under multi planning scenarios with
given combinations of weights for urban suitability, high-quality farmland protection, and landscape compact-
ness were efficiently derived from the ACO model. Hypothetic datasets were initially used to test the perfor-
mance of ACO on global optimum and its ability to optimize complex landscape patterns. Compared with
experts' planning scenario, the optimal UGBs delimited by ACO model is practical. Results indicate that spatial op-
timization methods are plausible for delimiting optimal UGBs.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

A large amount of non-urban land has been converted into urban
land with the development of economy and society, and this trend is ob-
servable in fast urbanizing regions (Lambin & Meyfroidt, 2011). In
China, urbanization levels rose dramatically in the past 30 years and
have currently reached over 50%. However, most cities have shown
pell-mell expansion patterns, which would cause a series of ecological
and environmental problems, such as farmland erosion, forest degrada-
tion, and among others (Hoekstra & Wiedmann, 2014; Wei & Ye, 2014).
In this case, it is an urgent problem to design a suitable spatial pattern
for directing urban growth.

It has proven that smart urban growth can increase the density of
urban services and protect surrounding natural ecosystems (Jun,
2004). The scope and pattern of urban-land allocation must initially be
restrained in a certain areas, and the edge of it can be actually defined
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as the urban growth boundaries (UGBs) (Nelson & Moore, 1993). Estab-
lishing UGBs has been regarded as a regulatory measure for directing
smart urban growth (Knaap & Hopkins, 2001). UGBs can be traced
back to the concept of Great Britain's green belt in 1930s, but they
were really used as an urban planning tool about in 1960s. In the United
States, the typical UGBs were established in 1958 around Lexington,
Kentucky, and particularly UGBs carried forward by Portland, Oregon
has been taken as a classical reference for other cities (Nelson &
Moore, 1993). Currently, UGBs have played an important role and be-
come a cultural symbol in urban planning (Abbott & Margheim,
2008). America has taken UGBs as a significant tool to direct the smart
growth and made them of legal qualification (Hepinstall, Coe, &
Hutyra, 2013; Knaap & Hopkins, 2001). Many other countries such as
Swiss and India have also managed to promote the efficiency of UGBs
on urban planning. In China, delineation of UGBs has been given signif-
icant attention by government and researchers in recent years. Some big
cities have been aware that it is important to delimit UGBs for
restraining the pell-mell urban growth, and different similar policy
such as basic ecological line in Shenzhen has been correspondingly
put forward. A total of 14 cities such as Beijing, Shanghai, Guangzhou,
Xiamen, and among others were selected as piloting areas to delimit
UGBs in 2014, and this task was expected to be finished in 2015. Some
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researchers have also selected Beijing and Jinan as case study areas to
discuss the implementation procedure of UGBs delineation (Gennaio,
Hersperger, & Biirgi, 2009; Long, Han, Lai, & Mao, 2013;
Venkataraman, 2014; Zheng & Lv, 2016). The application of UGBs as a
significant tool to direct the smart growth is being carried forward by
Chinese government.

The increasing popularity of UGBs for restraining pell-mell expan-
sion requires efficient and feasible techniques to delimit those bound-
aries especially in China. A large number of methods have been
applied in solving this problem. For example, UGBs could be delineated
by planners with experiences. However, UGBs delimited by planners'
artworks lack of quantitative analysis and the patterns delimited by dif-
ferent experts may show great difference (Long et al., 2013). Therefore,
models have been developed to identify the probable boundaries quan-
titatively. Land use suitability evaluation models have been widely used
to delimit UGBs (Bhatta, 2009). In those models, urban land use suitabil-
ity is commonly evaluated from a series of spatial factors, e.g. topogra-
phy and traffic conditions (Cerreta & De Toro, 2012). Although these
evaluation methods are easy to implement, it is difficult to estimate
the contribution of geographical factors to potential urban suitability
in future (Kiran & Joshi, 2013). Moreover, in the view of urban-land al-
location, not only suitability but also landscape patterns are the signifi-
cant aspects (Cao, Huang, Wang, & Lin, 2012). Landscape characteristics
are commonly ignored when delineating UGBs if only suitability evalu-
ation models were considered (Santé, Crecente, & Miranda, 2008a).

As is well known, cities are dynamic systems influenced by both an-
thropogenic activities and natural processes (Washington-Ottombre et
al., 2010). Urban growth pattern can be predicted from spatio-temporal
variation trends of urban dynamics. Data mining algorithms such as
spatial logistic regression (SLR) and artificial neural network (ANN)
have been adopted to discover the urban growth probability (Tayyebi,
Perry, & Tayyebi, 2014; Tayyebi, Pijanowski, & Tayyebi, 2011). Com-
pared with land use suitability models, these models can identify the
contribution of spatial driving factors from the selected training sam-
ples, but they generally ignore the local interaction among land use
cells (Batty & Xie, 1999). Bottom-up based geo-simulation models
such as cellular automata (CA), which integrate the spatial growth prob-
ability and local interaction, have been then applied to the prediction of
land conversion in future (Li, 2011; Santé, Garcia, Miranda, & Crecente,
2010). UGBs can thus be delimited from the simulation result of urban
expansion (Long et al., 2013; Mitsova, Shuster, & Wang, 2011).

However, future urban growth does not strictly follow historical
rules. For example, the government may regulate the growth direction
in terms of socio-economic status and some special planning objectives
such as ecological conservation (Long, Gu, & Han, 2012), and thus, the
delimitation and prediction of UGBs based on historical rules is not al-
ways reasonable. Planning regulation and planning demands should
be involved for the delineation of UGBs. Therefore, the balance among
urban growth processes, planning regulations, and landscape character-
istics appeals to the attention of UGBs delimitation (Gordon,
Simondson, White, Moilanen, & Bekessy, 2009), which can be viewed
as a land use spatial optimization problem (Ligmann-Zielinska,
Church, & Jankowski, 2008). Simple GIS spatial analysis tools and pro-
cess-based simulation models cannot obtain optimal results (Li, Chen,
Liu, Li, & He, 2010). It is, therefore, essential to introduce spatial optimi-
zation models for delimiting UGBs.

Although UGBs are just designed as boundary lines, they can essen-
tially be viewed as optimal patterns of urban-land allocation in the
future. According to current researches, genetic algorithms (GA)
(Brookes, 2001), simulated annealing (SA) (Santé, Boullén, Crecente, &
Miranda, 2008b), particle swarm optimization (PSO) models (Liu,
Wang, Ji, Liu, & Zhao, 2012a; Masoomi, Mesgari, & Hamrah, 2013), ant
colony optimization (ACO) algorithms (Li, Lao, Liu, & Chen, 2011), etc.
have proven to be effective in solving such land use optimization prob-
lem. In those models, ACO has proven to be the most efficient in solving
area optimization problems such as zoning protected natural areas and

multi-type land use allocation, which are involved with conflicts among
multiple objectives, implemented on raster surfaces (Li et al., 2011; Liu,
Li, Shi, Huang, & Liu, 2012b). Therefore, this study aims to develop an
optimization-based framework in which a modified ACO has been de-
vised for creating optimal UGBs, and a fast growing area of Changsha-
Zhuzhou-Xiangtan urban agglomeration in Central China is selected as
the case study area to validate the availability of the proposed model.

2. Problem statement and methodology
2.1. Defining the mathematical model for delimiting UGBs

The essence of UGBs delineation is to constrain urban growth within
a given region, protect surrounding rural landscapes and explore opti-
mized urban spatial patterns in the geo-space (Cho, Chen, Yen, &
Eastwood, 2006), which can be expressed as the set of grid cells in a
two-dimensional matrix with I rows and J columns. The land inside
the UGBs is allowed for urban growth, whereas the land outside the
UGB:s is set aside for farming, forestry, and low-density residential de-
velopment (Abbott & Margheim, 2008). Optimal UGBs are to assign
urban land for the most probably connected cells, which is aim to bal-
ance the conflicts between urban growth and ecological conservation.
The status of a cell in row i(i=1,2, --+,I) and column j(j=1,2,,]) can
be represented as a binary variable x;; and x;€{0,1}, such that x;;=1 if
the cell is allowed for urban growth; otherwise, x;; = 0. Whether cell
(i,j) is 1 or O is determined by the given objectives and constraints.
Then, the urban growth boundaries can be derived from the edge of
the patches labeled as 1. In this study, the objectives and constraints de-
fined in the model are listed as follows.

2.1.1. Objectives

2.1.1.1. Maximum suitability for urban growth. Urban growth is mainly in-
fluenced by a series of spatial factors, and the suitability of a land cell for
urban growth is often expressed as the status of location condition (e.g.
transportation, topography, and surrounding environment) (Kiran &
Joshi, 2013). Maximum suitability is calculated using the following
equation:
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where f,ir is the average suitability of the growth pattern, SuitUy; is the
suitability of cell (i, j) for allocating urban land.

2.1.1.2. Maximum preservation for high-quality farmlands. Encroaching on
a number of farmlands is inevitable for urban growth. However, the im-
moderate occupation must be restrained for food security (Godfray et
al., 2010). The quality of farmlands determines the quantity and location
of those preserved, farmlands of the highest quality have the highest
probability to be preserved. The value for measuring maximum farm-
land preservation is calculated as follows:
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where ffurmp represents the average level of high-quality farmlands pre-
served. SuitF;€(0,1) is defined as the quality of farmland, which can be
measured using the suitability evaluation of agricultural land use.
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2.1.1.3. Maximum compactness of UGBs pattern. If only the urban suitabil-
ity and high-quality farmland preservation are considered for UGBs op-
timization, then urban land may distribute as fragmentary patterns.
Actually, the future state of a cell is also influenced by its neighbor
cells, a compact urban patch is preferred by developers to perform de-
velopment activities (Santé et al., 2008a). The landscape pattern of
urban patches is also significant to planning layout. Compactness
index has been used to measure the landscape pattern, which is charac-
terized as the ratio of the area to the perimeter for every urban patch (Li
etal,, 2011). In this study, average compactness index is adopted so as to
make urban patches regular and is expressed as:

P e
Max fcompu = (ZM)/P 3)

p=1 lp

where feompy i the average compactness of urban patches, P is the total
number of urban patches, a, and I, are the area and the perimeter of
patch p respectively. p=1,2, -+ ,P.

Based on these conflicting objectives, two popular methods includ-
ing Pareto selection and the weight combination have been efficiently
used to solve this problem (Huang, Fery, Xue, & Wang, 2008; Santé et
al., 2008b). In this study, the final objective (utility) function for UGBs
delimitation is designed to provide alternative solutions with the use
of a weight combination. The expression is given as follows:

Fuces = Wsuitu * Fsuitu + Wearmp X ffarmp + Weompu

X fcompu/ (Wsuim + Wfarmp + Wcampu = 1) (4)
where Fycgs is the total utility. The parameters of wy,, , W, and W
are the weights assigned to urban suitability, farmlands preservation,
and landscape compactness respectively. Optimal UGBs should achieve
the best utility with the given weight combination.

2.1.2. Constraints

When delimiting the UGBs, not all cells can be used for urban growth
because of physical attributes and ecological conservation. Meanwhile,
the scope of UGBs in a planning period is mainly influenced by socio-
economic development. Therefore, quantitative and spatial constrains
should be incorporated into UGBs optimization in terms of external
planning interventions.

2.1.2.1. Scope of UGBs. The scope of UGBs is determined and adjusted ac-
cording to the socio-economic development in a planning period (He,
Okada, Zhang, Shi, & Zhang, 2006). In most cases, annual urban growth
rate is adopted to measure the total quantity of urban land in a region,
that is, the scope of UGBs, using statistical analysis methods (Lambin
& Meyfroidt, 2011). However, subregions such as different administra-
tive districts of the city playing dissimilar roles in future urban growth
(Altieri, Cocchi, Pezzi, Scott, & Ventrucci, 2014). The quantities assigned
for subregions will influence the internal structure of urban growth in
any planning period. Therefore, the quantity of urban land for each sub-
region should be coordinated and constrained to obtain optimal UGBs.
The scope of UGBs can be correspondingly expressed as:

C

R
A<D D X ZsSpl, VSES (5)
i=1 j=1

where S is the total number of subregions and Z; is a binary variable that
identifies if cell (i, j) belongs to the sth subregion. If cell (i, j) is contained
within the sth subregion, then Z;=1; otherwise, Z;=0. Meanwhile, if
the cell (i, j) in the sth subregion is allocated with urban land, then
X;j = 1, otherwise, x;; = 0. A; and 1, which are the minimum and max-
imum number of cells planned for the sth subregion respectively. This
constraint can regulate and balance the quantity assignment of urban
land among subregions.

2.1.2.2. Spatial constraints. Land use preserved for ecological services
must be excluded from urban-land allocation (Reza & Abdullah, 2011).
Physical or legal characteristics have been considered as important con-
straints to prevent a cell from urban expansion (Tayyebi et al., 2011)
These constraints generally include elevation, location of mountains,
and government-protected lands (e.g., forests, wetlands, basic farm-
lands, and lakes). Newly increased urban land cannot encroach on
cells classified into ecological conservation areas or inappropriate for
urban expansion. This can be expressed as follows:

x#1, veell(i, j)EC (6)
where C is the set of cells forbidden for urban growth.
2.2. Optimizing UGBs with modified ACO

2.2.1. Classical ACO algorithm

With the objectives and constraints described above, ACO is modi-
fied to delimit UGBs, that is, obtain the near-optimal solution of Eq.
(4). The ACO algorithm, which was first proposed by Italy scholar Dorigo
in the 1990s (Dorigo, Maniezzo, & Colorni, 1996), can solve various op-
timization problems by simulating the behavior of ants in seeking foods.
The mechanism of classical ACO can be explained through solving the
traveling salesman problem (TSP) which is to find the shortest tour
connecting N given cities (Dorigo et al., 1996). In TSP optimization, the
probability of an ant selecting a path moving from city u to city v is de-
termined by both pheromone trail and heuristic information. It is
expressed as (Dorigo et al., 1996):

3

[Tuv(t)}a : [ uv(t)]l i k
if vec
S e e 7)

keck

Pry(t) =
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where p,, (t) is the transition probability from city u to city v for the kth
ant at time ¢, 7,(t) is the amount of pheromone trail on path (u,v), and
Ty(t) is a heuristic function related to visibility (travel distance). The set
C* represents the cities that can be visited again without any repetition.
A taboo list is used to prevent an ant from traveling the visited cities
again. o and B are used to control the relative importance of the phero-
mone trail versus the visibility (travel distance).

At each iteration time, the amount of the pheromone trail is updated
according to the following equations (Dorigo et al., 1996):

Tuw(t+1) = (1=p)Tuw(t) + ATuy(t) (8)

K

ATw(t) =) ATy() 9)

k=1

where p is the evaporation rate of the pheromone trail between time t
and t + 1, AT%,(t) is the quantity of the trail substance per length unit
laid on path (u,v) by the kth ant between time t and t+ 1, and K is the
number of ants traveling the path (u,v). AT%,(t) is calculated with the
following equation:

ATl () = § L (10)

Q if ant k visisted (u, v)
0 otherwise
where Q is a constant which can be subjectively defined. In most cases, it
is given as the value of 1, and the whole equation represents the
accumulated quantity of the trail substance per length unit laid on the
traveling path within a time interval in TSP problem (Dorigo et al.,
1996). L is the tour length or total travel cost of the kth ant.

The heuristic function 7,,,(t) is commonly calculated as the inverse of
the distance (d,,) between city u and city v (Dorigo et al., 1996). A
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shorter route connecting city u with city v will have higher probability of
being selected by an ant.

2.2.2. Modifying ACO for the delineation of UGBs

The delineation of UGBs aims to achieve the global optimized pat-
terns for future urban growth. ACO algorithm should be modified to
adapt the designed objectives and constraints. Heuristic function and
pheromone trail must be adjusted to delimit the optimal UGBs.

2.2.2.1. Heuristic function. Heuristic function is designed to guide the
traveling of ants, which were usually calculated only using the suitabil-
ity for area optimization problem (Li et al., 2011). However, using suit-
ability alone to calculate heuristic information may cause dispersive
urban patches scattered within the UGBs (Bhatta, 2009). During the de-
lineation of plausible UGBs, an artificial ant is inclined to select local
connected and compact patches with high urban suitability and superi-
or quantities of high-quality farmlands preserved. The constraint of
local connectivity is thus incorporated into the heuristic function and
expressed as follows:

K (t) = Wiy % SUitU + Wy x (1—Suiit Fiy) + Weompu
i+Q j+Q

PIPBL
i—0j—0
X — 11
2+ Q+1)? ()
Q= Opx— Te x (Qmax—Omin) (12)

T

where nf}( t) is the heuristic function on cell (i,j) for the kth ant at time t,
and Wyitu, Wrarmp, and Weompy are the weights for suitability, farmland
preservation, and compactness, respectively. The local connectivity is
calculated using the urban density within a dynamic neighborhood to
group small patches together. Q represents the neighborhood of cell
(1,j). Qmax and Qp,;, are maximum and minimum sizes of the neighbor-
hood, respectively. Then the size of connected patches is determined by
the size of neighborhood window. Qi is usually set as the size of a
Moore neighborhood, whereas Q. is a subjective value set with the
decision-makers' experience. The larger the value of Q. is, the larger
the connected patch is. In this study, Qnax is assigned with the average
size of urban patches in 2015. The neighborhood window Q is dimin-
ished from Qnax to Qmin during the iterative process. T and T, are the
numbers of total iteration times and current iteration time, respectively.

2.2.2.2. Pheromone trail accumulation. During the optimization process,
ants can visit any cell available for allocating urban land and release
pheromone trail on the visited cells. The amount of deposited phero-
mone is related to the total utility of the urban allocation pattern. A
cell with the larger amount of pheromone can attract ants to select it,
and additional more amount of pheromone is deposited on this cell.
Pheromone feedback among the artificial ants can correspondingly gen-
erate the maximum utility, and the allocation pattern selected by any
ant represents a solution. Hence, the global pheromone trail is accumu-
lated using the average utility of a solution and expressed as:

-
inijch(f)

Ty(t) = (1=p) x Ty(t-1) + = (13)

S

=1
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where 7(t) and 7;(t — 1) are the pheromone trail deposited on cell (i,j)
by all the ants at time t and time t — 1, respectively; Fcgs(t) is the total
utility of the urban allocation pattern selected by the kth ant calculated
using the Eq. (4) at time t.

2.2.2.3. Probability calculation. The cell (i,j) selected by ant
k (k=1,2,--,K) for allocating urban land is finally determined by the
transition probability. The conventional expression representing the
combination between heuristic information and pheromone trail for
area optimization problems is similar with Eq. (7) (Li et al.,, 2011). The
linear expression can be derived from the log transformation of Eq.
(7). A modified expression is adopted to calculate the transition proba-
bility and is expressed as:

ﬁg(t) _ {w x T(t) + (1—0) x 1) if ijec i

0 otherwise

where pg is the probability for the kth ant to allocate urban land on cell
(i,j), o is the given weight used to control the relative importance of the
pheromone trail versus the heuristic information, and C is the set of cells
unavailable for allocating urban land.

2.2.2.4. Status updating and UGBs delineation. At the initial stage, the so-
lution formed by any ant k is randomly generated. The utility FScp,(t)
under the given weight combination in Eq. (4) is calculated and released
to all the cells traveled by ant k. 7;(t), nﬁ»( t), and p{j are then calculated.
The probabilities of all the non-urban cells to be selected by ant k are
sorted in descending sequence. The higher the probability is, the non-
urban cell will have a more chance to be selected. Accordingly, all the
non-urban cells of higher probability are updated with urban land
under the quantity constraint calculated using Eq. (5) in each iteration.
When the total utility value Fiig, is inclined to be a stable value during
the iterations, the optimal pattern of urban-land allocation formed by
ant k can be obtained. Then UGBs can be delimited from the edge of
the pattern with the highest utility. If the weight combination is
changed, then the pattern of delimited UGBs will correspondingly var-
ied. Fig. 1 illustrates the main procedure of delimiting UGBs using ACO.

3. Model implementation and results discussion
3.1. Study area and materials

The core area of Changsha-Zhuzhou-Xiangtan urban agglomeration
(CZTUA) in Central China was selected as the case study area to validate
the proposed model. This region contains three municipal centers
(Changsha, Zhuzhou and Xiangtan) and 15 country level zones
(Fig. 2). The three municipal cities are connected with each other tightly
within 40 km along the Xiangjiang River. This region is turning to be the
economic growth pole in Hunan province with a total area of 6084 km?,
a total population of approximately 60 million, and a total GDP of over
1000 billion Yuan RMB in 2015. As a typical urban agglomeration in
Central China, CZTUA has undergone rapid urbanization. By the year
of 2015, the urbanization level has reached 64%. Regulating the urban
growth of CZTUA has turned to be an important strategy for building cit-
ies oriented with “resource-saving and environment-friendly”. Delinea-
tion of UGBs is essential to balancing urban growth and environment
conservation in CZTUA.

Remote sensing images and GIS spatial data mainly including DEM,
road networks, transportation centers, administration centers, and
among others were used to assist UGBs delineation. Landsat images
(124-40, 123-41) collected in 2005, 2010, and 2015 were used to re-
trieve urban land. DEM and Landsat images were downloaded from
the United States Geological Survey website. Land use maps were visu-
ally interpreted and classified from Landsat images, and the interpreta-
tion accuracy is up to approximately 92% with the validation of Google
earth images. Other spatial data was obtained from Provincial Geomatic
Center of Hunan province. All spatial datasets were converted with the
same projection and the resolution.
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Fig. 1. Flowchart of the ACO model for delimiting UGBs.

3.1.1. Land use suitability evaluation

It has proven that the urban suitability was greatly determined by
topographic and traffic conditions (Liu, Wang, et al., 2012). In this
study, the urban suitability in Eq. (1) was calculated by using a total of
12 spatial variables including distance to development centers (e.g.,
municipal centers, provincial capital, county centers, and urban
patches), distance to transportation conditions (e.g., county roads, pro-
vincial roads, national roads, highways, railway stations, and airports),
and topographic conditions (e.g., elevation and slope). Values of all
these variables are normalized within the range of 0-1 considering
their maximum impact to urban growth. Analytic hierarchy process
(AHP), which can effectively support decision making with regard to
complex issues that involve the comparison of decision elements
(Tudes & Yigiter, 2010), was used to calculate the weights for the select-
ed factors. The pairwise comparison matrix was built based on the con-
tribution of these factors to urban growth, which was analyzed and
concluded from the distribution pattern of newly increased urban land
during the period 2005-2013. Similarly, we can also calculate the agri-
culture land suitability in Eq. (2) by using the factors to identify the
quality of farmland. The parameters of great soil group, land use

capability class, land use capability sub-class, soil depth, slope, eleva-
tion, erosion level and other soil properties were used (Akinci et al.,
2013). The consistency ratio of AHP for evaluating urban suitability
and agriculture land suitability was 0.0745 and 0.067, respectively,
which were less than 0.1. The suitability maps were used as the basic
input data for ACO model.

3.1.2. Ecological sensitive areas recognition

Ecological sensitive areas and lands for ecological service should be
prevented from urban growth, mainly including rivers, mountains, for-
est parks, natural conservation areas, and scenic areas (Li et al., 2011).
Therefore, Xiangjiang River, Yuelu Mountain, Orange Isle, green belt
among three municipal cities, and other large-scale rivers are excluded
from urban expansion.

3.1.3. Quantity of urban growth for each subregion

Delineation of UGBs should also consider the growth directions and
quantitative balance between subregions. In this study, we used the
county level administrative districts as the subregions. It was assumed
that urban growth in CZTUA would continue with the same average
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Fig. 2. Location and the core area of Changsha-Zhuzhou-Xiangtan urban agglomeration.

annual rate as that during the period 2000-2015. The quantity of urban
land for each subregion in 2030 defined as Eq. (5) was then predicted.

3.2. Results analysis

The three objectives (i.e. maximum suitability for urban growth,
maximum preservation for high-quality farmlands, and maximum com-
pactness of UGBs pattern) may conflict with each other, and decision-
makers show different preferences for these objectives. The composite
optimality score can be defined in different ways by emphasizing differ-
ent objectives to generate alternative patterns (Santé, et al., 2008a; Li et
al., 2011; Liu et al., 2012b). The values of the weight for each objective
ranging from 0 to 1 can be set, and various combinations can be gener-
ated to analyze the sensitivity of the proposed model. The weight for
each objective was dived with the interval of 0.25 in this study, and
the corresponding weights are 0, 0.25, 0.5, 0.75, and 1. Table 1 shows
the feasible weight combinations we have set for the three objectives
to generate different UGBs patterns. Options A, C, and F can be eventu-
ally viewed as the optimization that tries to maximize both urban suit-
ability and farmland protection. The relative weights of 3:0:1, 1:0:1, and
1:0:3 were given to generate allocation patterns that maximize suitabil-
ity and compactness of urban land masses (options B, E, and I). The rel-
ative weights of 2:1:1, 1:2:1, and 1:1:2 were given to generate

Table 1

Optimum values with different multi-objectives integrated.
Options Weights fsuitu ffarmp fcompu Fucs

Wsuitu Wfarmp Wcompu

A[Figure 8 (a)] 0.75 0.25 0.00 0.9606 0.6746 0.9814 0.8891
B [Figure 8 (b)] 0.75  0.00 0.25 0.9669 0.5184 0.9963 0.9743
C [Figure 8 (c)] 0.50  0.50 0.00 0.9268 0.7403 0.9848 0.8336
D [Figure 8 (d)] 0.50  0.25 0.25 0.9572 0.6279 0.9887 0.8828
E [Figure 8 (e)] 050  0.00 0.50 0.9581 0.5309 0.9756 0.9669
F[Figure 8 (f)] 025 0.75 0.00 0.8985 0.7643 0.9586 0.7979
G [Figure 8 (g)] 0.25  0.50 0.25 09112 0.7384 0.9409 0.8322
H [Figure 8 (h)] 025 025 0.50 0.9451 0.6106 0.9695 0.8737
I [Figure 8 (i)] 025  0.00 0.75 0.9501 0.5354 0.9974 0.9856

allocation patterns that maximize all the three objectives (options D,
G, and H). Fig. 3 shows the corresponding optimization results.

Figs. 3(a), (c), and (f) show that the urban-land allocation patterns
under options A, C, and F are fragmented. Newly increased urban
lands are mainly located around urbanized areas or are adjacent to
roads and are kept away from high-quality farmlands, because the com-
pactness wasn't incorporated into the utility function. When increasing
the weight for farmland preservation, the average suitability and total
utility value turn to be decreased, the patterns are more fragmented,
and a few high-quality farmlands of superior location conditions are
excluded from urban growth. Fig. 3(b), (e), and (i) show that the
delineation patterns are more compact with the increasing weight for
compactness, the utility values also show great difference among the
allocation patterns with the various weight combinations for suitability
and compactness. However, a few high-quality farmlands are
encroached on by urban land without considering ecological conserva-
tion. Options D, G, and H are to form the allocation patterns considering
the trade-off among suitability, farmland protection and landscape
compactness. The increasing weight for farmland preservation results
in fragmented patterns, and the increasing weight for compactness re-
sults in lower utility values of suitability and farmland preservation.
The patterns of UGBs delimited under different weight combinations
show that the weight for suitability ranging from 0.50 to 0.75, weight
for high-quality farmland preservation ranging from 0 to 0.25, and
weight for compactness approximated at 0.25 are rational for
application.

3.3. Discussion

3.3.1. Performance of the proposed model on spatial optimization

To validate the performance of the proposed model on UGBs delim-
itation, we should verify if the model can obtain the global best opti-
mum. The hypothetical data whose optimal pattern is easy to be
identified can be used to validate the performance of optimization
model (Lietal., 2011; Liu et al., 2012b). In this study, considering the ob-
jectives and constraints designed in the ACO model, we used three sets
of hypothetical data with the same resolution and size to validate the
performance of the ACO model in theory. And the preliminary test is di-
vided into three parts: (1) performance on local and global optimums;
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Fig. 3. Urban growth patterns of CZTUA obtained from the ACO model with various weighting scheme options.

(2) ability to obtain connected landscape patterns; and (3) efficiency in
optimizing complex spatial structures.

3.3.1.1. Performance on local and global optimums. A suitability layer with
a polycentric distribution was generated in Matlab using the ‘peak’ func-
tion. Fig. 4 (a) shows that the suitability map contains a large area of the
highest value in the bottom, which is designed to have enough area for
urban-land allocation; two small areas of the highest suitability near the
center, and two small areas of the lowest suitability adjacent to the left
and top parts. The experiment examines whether the proposed model
can generate such a pattern after sufficient iterations. The distribution
can help to examine if the proposed model will be trapped at a local op-
timum. Fig. 4(b) shows that some ants located within the areas of less

high suitability values in several early iterations, but the pattern evolves
quickly and almost all ants congregate at the bottom after 10 iterations.
The pattern eventually stabilizes after 20 iterations, which indicates that
the ACO can avoid the local optimum and obtain the best global
solution.

3.3.1.2. Ability to obtain connected landscape patterns. If only compact-
ness is considered, then the optimal pattern can reach maximum
value when regular patches are generated even though they are isolated
from each other. The ACO devised in this study considers both compact-
ness and local connectivity for practical planning demand. In this test,
small urban patches with different sizes but the same values of suitabil-
ity are randomly scattered in the space, different size of searching
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Fig. 4. (a) Hypothetical data with polycentric distribution and (b) optimization results.

neighborhood window was designed to examine if the ACO can gener-
ate a connected and compact pattern. Fig. 5 lists the optimization results
retrieved with different size of searching window.

Fig. 5 indicates that the searching window determines the size of the
connected patch. The larger the searching window is, the bigger the
connected patch is. Several big regular patches connected from all
small patches are generated when the maximum searching window is
set as 30 (Fig. 5b). All small patches are integrated into one patch
when the maximum searching window is set as 60 (Fig. 5¢). The
whole optimization process proves that the ACO model can obtain the
expected connected pattern by adjusting the searching window.

3.3.1.3. Efficiency in optimizing complex spatial structure. Another
hypothetic data is prepared by using a suitability map of complex spatial
structure. Fig. 6 shows the central areas of the highest suitability denot-
ed by a question mark. If only suitability is considered for the optimal
objective, then the expected pattern will be close to the original ques-
tion mark. When more optimal objectives are demanded, the different

b) Qmax=30

a) Qmax =1

optimized patterns are expected. The experiment tests if the model
can achieve the expected spatial pattern conforming to the designed
multi-objectives. Varying weights are set for suitability and compact-
ness, which represent the different preference for the optimal
objectives.

Optimization results show if the higher weight is given for the suit-
ability, then ACO can generate a pattern more similar with that of the
highest suitability (Fig. 6a). Cells selected by artificial ants aggregate
within the top parts provided that the two weights are given as the
same values, and this area presents a big compact patch (Fig. 6b). The
higher weight is given for the compactness, the more compact and reg-
ular pattern will be formed on the top parts of the highest suitability
(Fig. 6¢). The results illustrate that ACO can efficiently obtain expected
patterns adaptive to the changed preference for different objectives.

3.3.2. Practicability of optimal UGBs retrieved by ACO
The results retrieved under different weight combinations can
provide references for decision-making. According to the planning

¢) Qmax =60

Fig. 5. Optimization results using a dynamic searching window.
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Fig. 6. Optimization results with different weights for objectives using hypothetic data.

demands of the case study area and sensitivity analysis of weight com-
binations, the relative weights of 6:1:3 for urban suitability, farmland
preservation, and landscape compactness were eventually chosen by
the planning preference to yield the optimized urban-land allocation
pattern. Fig. 7(a) shows the final UGBs which was delimited by using
ACO.

The potential growth pattern in a future year during the planning
period can be used to assess the practicability of the UGBs. If most of
the urban areas is contained within the delineated UGBs and pell-mell
expansion is effectively controlled, then the UGBs are reasonable. The
UGBs and remote sensing image are first compared visually. Fig. 7(a)
shows the delineated UGBs and the present urban pattern overlaid on
remote sensing image collected in 2015. The dark red areas represent
urbanized regions (2005). The red arrows reflect the main directions
of future urban expansion. The UGBs include almost all newly increased
urban areas from 2005 to 2015. Three urban centers in Changsha, Xiang-
tan, and Zhuzhou distributed along the Xiangjiang River and a series of
small urban clusters are exhibited in the optimization result. The

_~* Main urban growth direction

Green belt among three municipal cities

ﬂ TM images in 2015
(a) Optimized UGBs with ACO model

optimal pattern conforms to the polycentric development theory of
urban agglomeration, which is feasible to make planning of smart
urban growth.

Planning scenario designed by experts were further used to validate
the practicability of optimal UGBs. Fig. 7(b) shows the planning map de-
signed for CZTUA in current urban planning. Spatial conformity of urban
areas among the three cities are expected by government. It is found
that there is great spatial conformity of urban areas between the opti-
mal UGBs and the planning scenario, and enough lands are reserved
for urban growth in important regions. Moreover, quantitative compar-
ison was also carried out between the model's outputs and planning
scenario in terms of the three designed objectives in this study. The av-
erage utility of the three objectives was calculated, respectively, and the
results were listed in Table 2. As for the utility of single objective, higher
utilities of urban suitability and farmland preservation can be achieved
from the optimal UGBs, while the utility of the landscape compactness
is slightly lower than that of the planning scenario. The total utility of
optimal UGBs is also higher than that of planning scenario, and the

B Ccommercial land
Residential land
I industrial land

(b) Land use planning map designed by planners

Fig. 7. Validation of the optimal UGBs with remote sensing image and the land use planning scenario.
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Table 2
Comparison between optimal UGBs derived from ACO and planning scenario.

Scenarios Fuitu ffurmp fcumpu Fucs(Wsuiew= 0.6,

Warmp = 0.3,Weompu=0.1)
Optimal UGBs 0.9548 0.6804 0.8972 0.8667
Planning scenario 0.9336 0.6432 0.9871 0.8518

values are at close quarters. Thus, the optimal UGBs derived from the
ACO model can provide feasible reference for decision-making.

4. Conclusion

Quantitative delimitation of UGBs is a complex decision problem
under given planning demands and constraints. This study developed
an ACO-based framework with the integration of intrinsic urban pro-
cesses and external planning interventions, which aims to generate a
UGBs pattern that maximizes the utility value in terms of urban suitabil-
ity, connected compactness, and farmland preservation. The main mod-
ifications include: (1) defining spatial objectives and constraints
according to urban growth demands; (2) incorporating local connectiv-
ity into the suitability and compactness to delimit UGBs; and (3)
updating the ants' status under the given rules and quantity constraint
for each subregion to keep the structure balance.

The experiments using hypothetical data demonstrate that the ACO-
based model will not be trapped at the local optima, can generate a con-
nected pattern and optimize complex landscape pattern. The proposed
model was tested in the core area of Changsha-Zhuzhou-Xiangtan
urban agglomeration for the planning period 2006-2030 indicate that
optimal urban-land allocation patterns can be efficiently derived from
the modified ACO. The optimal UGBs delimited from the result of
urban-land allocation is theoretically available and can well reflect
main growth directions of Changsha-Zhuzhou-Xiangtan urban
agglomeration.

This study suggests that the optimization-based model can well han-
dle the trade-off between intrinsic urban processes and external plan-
ning interventions. The model validation shows that optimal UGBs can
be generated by using the spatial optimization model under the given
planning objectives and constraints. Our study has indicated that spatial
optimization methods are attractive and plausible for delimiting UGBs
in the fast growing areas.
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