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ABSTRACT
Modeling urban growth in Economic development zones (EDZs)
can help planners determine appropriate land policies for these
regions. However, sometimes EDZs are established in remote areas
outside of central cities that have no historical urban areas. Existing
models are unable to simulate the emergence of urban areas with-
out historical urban land in EDZs. In this study, a cellular automaton
(CA) model based on fuzzy clustering is developed to address this
issue. This model is implemented by coupling an unsupervised
classification method and a modified CA model with an urban
emergence mechanism based on local maxima. Through an analy-
sis of the planning policies and existing infrastructure, the proposed
model can detect the potential start zones and simulate the trajec-
tory of urban growth independent of the historical urban land use.
The method is validated in the urban emergence simulation of the
Taiping Bay development zone in Dalian, China from 2013 to 2019.
The proposed model is applied to future simulation in 2019–2030.
The results demonstrate that the proposed model can be used to
predict urban emergence and generate the possible future urban
form, which will assist planners in determining the urban layout and
controlling urban growth in EDZs.
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1. Introduction

Urban development is considered one of the most widely discussed issues in urban
studies (Lagarias 2012, Li et al. 2019, Liao et al. 2017a, Liu et al. 2018). Along with
socioeconomic development and population growth, urban sprawl has recently been
very intense in many regions, resulting in an increase in infrastructure costs (Tayyebi et al.
2014), the loss of cropland (Amour et al. 2017), unnecessary land resource usage and
energy consumption (Chen et al. 2013, Liao et al. 2017b), urban heat wave (Liao et al.
2018),and the degradation of ecosystems (Sohl et al. 2012). Lack of planning and land use
policies is one of the reasons for the uncontrolled development of urban land use

CONTACT Xiaoping Liu liuxp3@mail.sysu.edu.cn

INTERNATIONAL JOURNAL OF GEOGRAPHICAL INFORMATION SCIENCE
https://doi.org/10.1080/13658816.2020.1741591

© 2020 Informa UK Limited, trading as Taylor & Francis Group

http://orcid.org/0000-0001-9401-7353
http://orcid.org/0000-0003-4242-5392
http://orcid.org/0000-0002-2059-1341
http://orcid.org/0000-0001-7506-3549
http://orcid.org/0000-0001-7537-2288
http://www.tandfonline.com
https://crossmark.crossref.org/dialog/?doi=10.1080/13658816.2020.1741591&domain=pdf&date_stamp=2020-03-21


(Lagarias 2012) because urban expansion is not only driven by factors such as social-
cultural characteristics, accessibility, and terrain but is also associated with decision-
making on the allocation of new urban areas (Lagarias 2012). To maintain the sustainable
development of society and human-land coordination, planners should make exact
judgments on the extent of urban growth (He et al. 2018).

Urban expansion models are commonly adapted to support urban planning and man-
agement at different scales (Arsanjani et al. 2018, Guy et al. 1997, White and Engelen 2000,
Barredo et al. 2003, Li and Liu 2006, Liu et al. 2008, Jjumba and Dragićević 2012, Long et al.
2012), which is essential for rapidly developing region (Xue et al. 2016, Inkoom et al. 2017,
Yao et al. 2017). Many current studies address the issue of urban expansion using simulation
modeling based on cellular automata (CA) (Chen et al. 2014, Kamusoko and Gamba 2015,
Feng et al. 2016). CAmodels have been widely applied in projecting future urban expansion
patterns because they can effectively simulate complex geographical processes through
local rules (Al-Ahmadi et al. 2009).

Over the past two decades, various kinds of CA models have been developed for
simulating the urban growth processes (Arsanjani et al. 2018, Bren D, Amour et al. 2017,
Deal and Schunk 2004). Among these studies, CA models based on the analysis of
historical urban forms and various driving factors can provide insights into the nature
of urban land-use dynamics (Guy et al. 1997, Li and Yeh 2002, Kamusoko and Gamba
2015). A large part of CA studies determines the transition rules or transition potential by
using intelligence algorithms. These empirical transition potential models include logistic
regression (Tayyebi et al. 2014), random forests (Kamusoko and Gamba 2015), and
artificial neural networks (Li and Yeh 2001). These kinds of CA models can help researchers
obtain robust explanations of land-use patterns (Sohl et al. 2007) and are easy to imple-
ment (Verburg et al. 2004). In recent years, many researchers have focused on integrated
approaches that combine top-down and bottom-up dynamics in land-use modeling (Sohl
and Sayler 2008). These integrated models are constructed by coupling a CA model with
various techniques, such as system dynamics (Sohl and Sayler 2008), multisection models
(Li et al. 2017, Dong et al. 2018), and Markov chains (Arsanjani et al. 2011). The develop-
ment trends of the individual land use types and the local-scale dynamics are both
addressed in the integrated models (Verburg and Overmars 2009). These models can
synthesize various interactions, ranging from environmental to socioeconomic factors at
different spatial-temporal scales (He et al. 2006). Macroscale and local-scale planning
policies under different scenarios can be addressed in the integrated models, and thus,
the impact of policies on urban growth can be understood (Barredo et al. 2003, Huang
et al. 2014). For example, a CA-based future land use simulation (FLUS) model that
combines the top-down allocation of land use change to grid cells with a bottom-up
determination of conversions for specific land use transitions was proposed to simulate
land cover change at various scales and serve multiple purposes (Li et al. 2017, Liang et al.
2018b, Liu et al. 2017). Various aspects of urban growth have been explored by previous
CA studies, such as land use change patterns (Chen et al. 2016), urban growth boundaries
(Liang et al. 2018a), changes in animal habitats (He et al. 2017), landscape connectivity
(Huang et al. 2018a, Huang et al. 2018b), agricultural land loss (Amour et al. 2017), urban
renewal (Zheng et al. 2015) and the effects of various planning policies on urban growth
(Liang et al. 2018b, Shu et al. 2017).
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Althoughwidely used in urban dynamics simulation, previous CAmodels can only simulate
the urban change in a region that has already been under development for a certain period
because future urbanization of these regions will most likely develop around already devel-
oped high-density urban land or large urban clusters (Fragkias and Seto 2009). They rely on
the availability of sufficient historical land use data in the study region to obtain neighbor-
hood effects and learn the urban development potential (Long et al. 2012). Therefore, these
models are unable to simulate the urban development and urban form in the places that have
no historical urban land. For example, the urban emergence and expansion in some economic
development zones (EDZs) that far away from central cities.

Although urban development potential still can be obtained by analyzing the current
driving factors with the analytic hierarchy process (AHP) (Wu 1998) without considering
historical urban land. However, AHP involves human subjectivity, which necessitates the use
of decision-making under uncertainty and introduces vagueness into the model process
(Tesfamariam and Sadiq 2006). Another way to solve this problem is using unsupervised
algorithms that only analyze the driving factors without relying on the training labels (e.g.,
historical urban land) to discover the development potential or transition rules of urban
growth. However, there are no past studies applying unsupervised methods to modeling
urban growth. Although Omrani et al. (2019) proposed an LTM-cluster framework that
combined the LTM model and K-means cluster to simulate land use change. However, the
cluster method in this study is a zonal tool, which splits the input data into several clusters for
handlingmass simulation data. The simulation procedure in this study is still carried out by the
Artificial Neural Network-based LTM model. In addition, most of the clustering methods (e.g.,
K-means, ISODATA, hierarchical clustering) can only obtain the classification label of the land
use types. Their clustering results lost gradient information and are unable to couple with
simulation models. Therefore, these unsupervised classification methods are commonly used
in land use classification studies (Li et al. 2018) but rare in simulation researches. To simulate
urban emergence in the places with no historical urban land, CAmodels should be integrated
with a clustering method which considers the memberships between various classifications
and simultaneously assigns the memberships of different categories to each cell.

In addition, only generating urban development potential without using historical urban
land is not enough to simulate the urban emergence (e.g., AHP-CA). Because traditional CA
models are based on neighborhood effects, they can’t simulate the urban emergence in
a region that almost has no historical urban area and the neighborhood effect are zero across
the whole region. Therefore, a CA model that can find the potential urban development
points is also needed for simulating urban emergence. This paper proposes a clustering-based
FLUS (CFLUS) model that couples an improved FLUS model with an unsupervised fuzzy
clustering algorithm (FCM) to simulate urban growth in areas without historical urban land
use. Through the analysis of various planning traffic networks and current driving factors (e.g.,
historical traffic networks) with a fuzzy C-means clustering algorithm. The improved FLUS
model includes an urban emergence mechanism based on local maxima of urban develop-
ment potential, which can simulate the occurrence of new urban patches. This method can
identify the most likely hotspot areas in a location with no historical urban land and thus can
project the emergence and development of urban land in the EDZs. This study provides a new
method for assisting urban designers to determine the start zones and final urban form for the
EDZs, aiming to prevent poor urban designs (Clarke 2014) in EDZs, which can’t be done by
previous models.
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2. Methods

The proposed CFLUS model is an adapted version of the FLUS model. The original FLUS
model is characterized by combining artificial neural networks (ANN) with a CA model
that has a self-adaptive inertia competition mechanism (Li et al. 2017, Liang et al. 2018a,
Liu et al. 2017). To model the urban emergence in the EDZs, the CFLUS model has the
following improvements. First, instead of the conventional supervised classification
method (e.g., ANN), an unsupervised classification method, the fuzzy C-means algorithm
(FCM), is implemented to determine the urban development potential without requiring
historical urban land. The reason why we choose the FCM algorithm instead of the other
commonly used clustering method (e.g., K-mean algorithm) will be elaborated below. We
also designed a multistep clustering framework and a fine-tuned method for the FCM
algorithm for the process of determining urban development potential; Second, we
designed an urban emergence mechanism based on local maxima to select urban devel-
opment points for EDZs that have no historical urban land. The general structure of the
CFLUS model is illustrated in Figure 1.

2.1. Multistep fuzzy clustering framework

The fuzzy C-means (FCM) algorithm is used to cluster various driving factors of urban
development, such as slope, proximity to city centers, proximity to planning traffic lines,
etc., to obtain the urban development potential and non-urban development potential
on each pixel. The theory of the FCM algorithm is elaborated below.

2.1.1. Fuzzy C-means algorithm
The fuzzy C-means algorithm is one of the best-known soft clustering algorithms (Rahimi
et al. 2004). Unlike the most commonly used K-means method or ISODATA clustering,
which directly assign specific categories for each sample, the fuzzy C-means algorithm
allows intermediate values between various classifications while simultaneously assigning

Figure 1. The framework of the proposed CFLUS model.
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the memberships of different categories to the same sample, which can be regarded as
the transition potential of land use types. The FCM algorithm can be expressed as the
minimization of the following objective function Jm:

Jm ¼
XN

i¼1

XC

j¼1
μij

m xi � vj
�� ���� ��2 (1)

where xi is a vector consists of the values that are extracted from all driving factors by the
same pixel i, N means the amount of the pixels in the study region; vj denotes the
clustering center of land use type j, which has the same length with xi; C denotes the
class number for clustering (Note: there are two land use types in this study: urban and
non-urban respectively, thus C is equal to 2); μij is a function that represents the degree of

membership of xi in cluster j, it means the transition potential for pixel i to change to land

use type j, such that
PC

j¼1 μij ¼ 1; and m is any real number greater than 1, which is an

additional weighted exponent for the fuzzy membership. The operator �j jj j can be any
type of inner product norm; typically, the Euclidean norm is used (Li et al. 2003).

The membership function μij defines the fuzziness of an image and the information
contained in the image (Selvakumar et al. 2012). In this study, the image is a multiband
data that is composed of multiple driving factors. The fuzziness result represents the
transition potential of land use type j at pixel i, which can be given by:

μij ¼
1

PC
j¼1

xi�vlj jj j
xi�vjj jj j

� � 1
m�1

(2)

where 1 � l � C, 1 � i � N. The μij will be iteratively updated until the clustering is
finished.

The clustering centers vl will be randomly initialized at the beginning of clustering, and
also be iteratively updated during the clustering process based on the following function:

vl ¼
PN

i¼1 ixi:μ
m
ilPN

i¼1 μ
m
il

(3)

The function Jm and Maxij are iteratively minimized during the clustering process. Maxij
can be regarded as an indicator for determining if the iteration stops. The clustering
process is finished centers until:

Maxij ¼ μij
kþ1ð Þ � μij

kð Þ�� ��n o
< ε (4)

where ε denotes the termination value or the constant between 0 and 1, which is
a parameter of FCM algorithm, and k is the number of iteration steps. The fuzzy C-means
algorithm produces the membership of urban land considering various driving factors
and is regarded as the transition potential of future urban areas in this study.

2.1.2. Fine-turn of the FCM algorithm
The FCM algorithm in this study only has two cluster centers because it clusters the
driving factors into two groups (urban land and nonurban land). The traditional FCM
initializes all the cluster centers randomly and updates cluster centers in the clustering
procedures according to formula (3). However, in this study the clustering center
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corresponding to the urban area is set to an unchanged vector constructed by several
zero values as in the following format:

v0 ¼ 0; 0; 0; . . . ; 0½ � (5)

The length of the vector equals the number of driving factors. The modification of the
FCM algorithm corresponds to an integration of the driving factors in the simulation. Most
of the driving factors we considered are proximity measurements such as the distance to
the traffic lines (e.g., arterial traffic planning) and the distance to important places (e.g.,
downtown planning). In addition, there is an underlying assumption in most urban
simulation studies that the closer the developing areas are located to such an infrastruc-
ture, the more likely that urban land is to grow (Clarke and Gaydos 1998). Other influen-
cing factors, such as the slope, are also consistent with this assumption. Therefore, cluster
centers that represent the urban areas can be defined as a vector in which all values are
low, and 0 is the lowest value in this study because all the driving factors are normalized
to a range of 0–1.0.

2.1.3. Multistep applications of the FCM algorithm
In the proposed method, the FCM algorithm may be implemented in several steps. In each
step, we cluster themultiple driving factors into two groups (two clusters). The FCM algorithm
then exports twomembership images of two clusters that represent the transition potential of
the future urban area and nonurban land, the FCM algorithm can ensure that the sumof these
two transition potentials are 1. In the first step, we cluster in the whole study region. However,
the urban development potential in the first step may not show the local spatial features and
heterogeneity because the clustering region may be too large, which may not satisfy the
conditions for practical use. Therefore, a binary image can be generated by comparing the
two potentials on each pixel. If the urban development potential is higher than the nonurban
development potential (urban development potential>0.5), the pixel of the binary image will
be given a value of 1; otherwise (urban development potential≤0.5), the pixel of the binary
image will be given a value of 0. An area on the binary image with a value of 1 can thus be
regarded as a first-step mask region.

In the second step, FCM is applied to the data of various driving factors of urban
development that is extracted by the first-step mask. Consequently, we obtain the second-
step urban and nonurban development potentials and corresponding second-step mask.
Then, we can apply the FCM based on the second-step mask for extracting urban and
nonurban transition potentials of the next step, and apply again on the third-stepmask until
all the urban transition potential are less than 0.5(so that the next step of the mask will not
be generated). During the simulation step, when the simulated urban area is larger than
one-third of the mask area, the current urban transition potential file will be changed to the
first step potential file. Figure 2 depicts a flowchart of themultistep fuzzy clusteringmethod.

2.2. Urban emergence mechanism based on local maxima

Based on the transition potential map exported by the fine-turn FCM algorithm, an urban
emergence mechanism based on local maxima of urban development potential is pro-
posed to identify the potential development points in local areas (3 × 3 neighborhood) of
the study area. In a local region (3 × 3 windows) of grid space, when the value of the core
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pixel is larger than surrounding eight other pixels, the position of the core pixel is defined
as local maxima. The local maxima on the probability surface of urban development are
the most likely development points at the local scale. In this mechanism, a 3 × 3 slide
window is employed to select some local maxima of the urban development potential
surfaces before simulation. The reason we used a 3 × 3 slide window is that the 3 × 3 slide
window is the smallest window to find local maxima. Only by using a 3 × 3 slide window
can we find all the local maxima on the urban development potential surface. The local
maxima were selected using the following rules:

Localmax ¼ Pswinn¼3
i¼0;j¼0ð Þ >max Pswinn¼3

i�0;j�0ð Þ
� �

� 1 � i; j � 1

Pswinn¼3
i¼0;j¼0ð Þ > � or randn� 1� RswinN

0
urban

� �
< σ

(
(6)

where Localmax denotes the local maxima of a sliding window. If the central pixel of the slide

window (Pswinn¼3
i¼0;j¼0ð Þ) has a higher transition potential than other pixels (Pswinn¼3

i�0;j�0ð Þ) in
the 3 × 3 slide window, the central pixel is one of the local maxima of the transition potential
surface. � denotes a threshold within [0,1] defined by the modeler to select the local maxima
with the highest urban development potential. randnis a random number between 0 and 1,

and RswinN
0

urban is the ratio of urban cells in an N’×N’ search window, where N’ is an odd
number. The search window is different from the previous 3 × 3 scan window in two aspects:

Figure 2. Schematic framework of the multistep applications of the FCM algorithm.
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first, the 3 × 3 scan window searches on the urban development potential surface while the
N’×N’ search window scans on the intermediate result of simulated urban land. Second, the
3 × 3 scan window is employed to select some local maxima with relative high urban
development potential, and he N’×N’ search window is used to give priority to the local
maxima that closer to new urban land and allows the local maxima with low urban develop-

ment potential can be chosen as urban development points. If randn� 1� RswinN
0

urban

� �
is

less than a small unexpected threshold σ, the local maxima can also be placed in the
geographic space. This condition allows the local maxima close to the original urban land
to develop into urban land, though the urban development potential is low (lower than
�). Because the growing cities still need the support of the original urban area.

Then, the random development points will be selected from these local maxima if the
following conditions are fulfilled:

DPoint ¼
Amountdpoint <

Demandurban�Amoundurban
APsizeurban

TypeLocalmax�urban land
PLocalmax > RandVal 0 � RandVal � 1

8<
: (7)

where AmountDPoint depicts the max number of development points, which are estimated
before simulation. Demandurban is the future urban amount specified by policymakers or
predicted by ‘top-down’ models. Amoundurban denotes the current urban amount.
APsizeurban represents the average size of the new urban patches, which is an input
parameter of this model. The number of new development points will increase until it
reaches the max amount of development points. During this process, if the position of a
Localmax still not develop to urban land, the third condition will be implemented – when
the transition potential of local maxima PLocalmax is greater than a random value RandVal
within (0, 1), a development point is placed in the cell. This rule gives priority to the local
maxima with high urban development potential but it also allows the local maxima with
low urban development potential can be chosen as development points. As a result, the
total probability of the CFLUS model can be expressed by the following form:

TPti;k ¼
Pi;k � randn� Inertiatk � conc!k if a DPoint is placed

Pi;k � Ωt
i;k;N � Inertiatk � conc!k others

	
(8)

where TPti;k is the total probability that grid cell i will be converted from the original land use
into the target land use k at iteration time t (only nonurban land can be converted to urban
land in this study); Pi;k denotes the transition potential of land use type k in grid cell i, which
was generated by the FCM algorithm; and conc!k is a transition matrix that defines the
conversion possibility from the original land use type c to the target land use k (1 denotes
possible conversion, and 0 denotes impossible conversion). randn is a random value
between [0,1], which allows new urban land to emerge in places where the neighborhood
effect is zero. Ωt

i;k;N denotes the neighborhood effect of land use type k in grid cell i at time t,

N is the neighborhood size. Inertiatk denotes the inertia coefficient of land-use type k at
iteration time t, which is determined by Demandurbanand Amoundurban (Liu et al. 2017).

Finally, we have both urban and nonurban total probabilities. These are adjusted in
proportion in the following formula to ensure that the sum is 1:
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TPti;k ¼
TPti;kP2

k¼1 TPti;k
(9)

Then, the total probabilities of two land use types will construct a roulette selection
mechanism, in which the two land use types will compete in each pixel. If the urban land
use type wins on a nonurban pixel, the nonurban pixel will change to an urban pixel. The
roulette selection mechanism enables the CFLUS model to better simulate the uncertain-
ties and randomness in the urban growth process (Chen et al. 2013). Figure 3 depicts
a flowchart of the urban emergence mechanism based on local maxima.

3. Study area and datasets

3.1. Economic development zones (EDZs)

EDZs, specified and managed by the urban designers, are important parts of urban
growth in many fast-developing regions (Wu and Webster 1998, Yang and Wang 2008, Al-
Ahmadi et al. 2009, Ong 2014), like China (He et al. 2016, Liang et al. 2018a, Liu et al. 2017,
Yeh and Li 1998). The number of EDZs in China reached 4120 in 1996. By 2003, it had
rocketed to 6866 and still increase with years (Huang et al. 2017). Zeng (2010) has pointed
out that EDZs are often managed in a top-down way which created a peculiar landscape
and played a critical role in China’s processes of urbanization and industrialization (Huang
et al. 2017). Therefore, it is very important for urban designers to guide the reasonable
layout of the urban shapes in the EDZs.

EDZs used to be established in remote areas outside of central cities, while in recent
years, some of them have integrated into the urban space as a whole, serving as new
subcenters of the main urban area (Wuttke 2011). Urban designers often make plans for
transportation networks, economic hubs, or other infrastructures for such regions.
Considering relevant urban development policies, previous CA models can project future

Figure 3. Framework of the urban emergence mechanism based on local maxima.
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urban form in these regions by analyzing the relationship between historical urban
distribution, and historical and planned urban infrastructure (Liang et al. 2018b).
However, some EDZs locate in places with almost no developed infrastructure and
urban areas. Thus, existing simulation models, which obtain transition rules by mining
the relationship between the historical urban pattern and various driving factors with
a supervised classification method (e.g., ANN and RF), are not available for these regions.
This study aims to use a fuzzy unsupervised classification method to mine the urban
development potential through analyzing construction conditions (e.g., terrain), existing
traffic networks and planning infrastructure in the Taiping Bay development zone, a port
EDZ far away from central cities with almost no original urban land.

3.2. Study area

The Taiping Bay development zone is located in northwest Dalian, the most developed
city in Liaoning province and Northeast China (Figure 4). The Taiping Bay development
zone is 130 km away from the downtown area of Dalian located approximately 240 km to
the south of Shenyang, the provincial capital city of Liaoning province. Taiping Bay is an
important port and logistics hub, which plays an important role in promoting the regional
development of the whole Liaodong Peninsula.

The study area considered in this research has a total planning area of 340 km2, including
a land area of 240 km2 and a planning reclamation area of 100 km2. The terrain of Taiping Bay
is flat. The harbor of Taiping Bay is richly endowed by nature with a broad estuary, deepwater,
slow-flow seawater, and a soft seabed. The traffic lines are very convenient in the Taiping Bay
development zone. There are many important traffic systems and traffic sites around the
study region, including the Shenyang–Haikou Expressway, the Harbin–Dalian high-speed
railway and its corresponding high-speed railway stations, and high speedway gates. In
summary, the Taiping Bay development zone has many location-related advantages for

Figure 4. Spatial location of the Taiping Bay development zone.
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developing as a port city, including favorable traffic infrastructure, excellent natural conditions
and ample space for development.

The development of the Taiping Bay development zone has led to 29.35 billion dollars
in investments. The decision-makers aim to build a modern port city in which humanity
and nature coexist harmoniously. Therefore, accurately identifying the most suitable area
for developing new cities, properly designing the urban form, and optimizing the layout
of urban space and land-use structure is of crucial importance for the Taiping Bay
development zone.

3.3. Data processing

Most of the driving factors are provided by the Master plan (2013–2020) in the Taiping Bay
development zone. However, the construction of the Taiping Bay EDZ has been delayed
by attracting investment and environmental protection issues in 2013 and 2017. The
construction of Taiping Bay EDZ is imperative because it has finished its attraction of
investment in 2017. With this in the background, the master plan from 2013 to 2020 has
been extended to 2030. (https://baijiahao.baidu.com/s?id=1616369792827214639&wfr=
spider&for=pc). As a result, only a few new urban patches are built during this period. The
new urban patches are extracted from the Google high-resolution imagery in 2013 and
2019 using visual interpretation. The true urban patches (Figure 8) are too few to reflect
the distribution pattern of urban emergence in Taiping Bay EDZ, nor can they be regarded
as the training samples of most of the supervised classification methods. Therefore, we
used these urban patches to validate the simulation results of the CFLUS model.

Two categories of driving factors are considered in the clustering process: 1) planning
factors and 2) existing factors. Planning factors include various kinds of planning roads,
city and business centers; existing factors contains all level of existing roads, terrain and
the proximity to rural residential areas. A total of 18 driving factors are collected in this
study (Figure 5). However, considering that the multicollinearity between variables may
bring negative effects on the clustering results (Dormann et al. 2013), we conduct a co-
linearity test with the Variance Inflation Factor (VIF)(Figure 6). The result shows that the
VIF values of 8 driving factors are larger than 10, which indicates that these factors have
high intercorrelations or inter-association with other independent variables. These driving
factors are excluded in the clustering process.

Finally, there are 10 factors pass the VIF test, include 6 planning factors and 4 existing
factors. These data used in this study are listed in Table 1. After coordinate correction and
rasterization, all of the spatial datasets were calculated or resampled to the same resolu-
tion of 10 × 10 m. We only considered two types of land use (urban land and nonurban
land) in the simulation. In addition, the water area, natural hilly region, and areas with
relatively high slope (>5°) are regarded as restricted areas that are not allowed to develop
into urban land.

4. Model implementation and results

The applicability of the proposed CFLUS model is first tested by discussing the urban
development potential determined by the multistep fuzzy clustering. Then, the spatial
simulation process of the CFLUS model is implemented to generate the simulation results
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regarding the urban amount decided by the master plan. In this study, the FCM algorithm
is applied twice to generate the two-step urban development potential, which divides the
driving factors listed in Table 1 into two categories: potential urban land and nonurban
land. The additional fuzzy exponent (m) is set to 2.0 according to the study proposed by
Rahimi et al. (2004), for better clustering results can be obtained based on the value of 2.0.
The termination threshold (ε) of the FCM algorithm is set at 5 × 10−10. The termination
threshold is encouraged to be set to lower values. The CFLUS will stop and output the
clustering result when the change of all the values of the fuzziness result (development
potential) is less than this threshold. The distribution pattern of fuzziness results will not
change a lot with the variation of the termination threshold. The Euclidean distance is
used to measure the distance between data points and cluster centers.

4.1. Urban development potential analysis

Figure 7(a,b) depict the output urban development potentials of the first-step fuzzy clustering
and second-step fuzzy clustering, respectively. The first-step clustering roughly identified the
high development potential area (the mask region) for the second-step clustering. The
second-step urban development potential on each cell is less than 0.5, sowe used the second-
step clustering result to run the simulation. Based on the mask region, the second-step

Figure 5. Driving factors collected by this study.
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clustering output a more precise urban development potential with more spatial features of
road networks and spatial heterogeneity. The higher urban development potential region in
the mask can also be recognized in the second-step clustering.

4.2. Urban growth simulation

4.2.1. Model validation and sensitive analysis
We first validated the CFLUS model with real data (new urban patches from 2013 to 2019).
Based on the second-step clustering result, we simulated the emergence of new urban
patches from 2013 to 2019. We have also developed a sensitivity analysis for testing the
model sensitivity to the average size of the new urban patches (ASNUP), the most
important parameter for determining the pattern of urban emergence. Other parameters
are listed in Table 2. All the parameters are determined by the user’s experience and

Figure 6. Variance Inflation Factor (VIF) of the driving factors. A VIF value larger than 10 indicates that
the corresponding driving factors have high intercorrelations with other variables.

Table 1. Independent variables that pass the VIF test in this study.
Category Data Data resource

Planning factors Proximity to port express Master Plan
Proximity to corniche
Proximity to main road
Proximity to branches
Proximity to ordinary road
Proximity to center avenue

Existing factors Proximity to rural residential area OpenStreetMap
Proximity to tertiary road
Proximity to highway
Elevation http://www.gscloud.cn/

Restricted data Water and terrain restrictions Master plan & Slope>5°
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calibrated using the trial-and-error approach (Feng and Tong 2020). Thus the values of
these parameters are determined by the simulation data, they may change if the CFLUS is
applied to other regions.

We overlaid the simulated urban emergence with the actual new urban patches and
find that most of the simulated urban patches appear nearby the actual urban patches.
However, considering that the urban emergence from 2013 to 2019 are very few, it is very
difficult for simulation models to hit the actual urban emergence at cell scale. Thus we
aggregate the actual and simulated urban emergence (10 m resolution) to the hexagon
grid with the side length of 2000 m and compare the spatial patterns of actual and
simulated results with the correlation coefficient (R) and the ratio of the number of correct
hexagons that contain both actual and simulated new urban patches (C).

Figure 8 shows the R and C values of the simulation results under different ASNUP
parameters. The correlation coefficient between actual and simulated patterns are still
relatively low (ranging from 0.1792 to 0.2581), the CFLUS model reached the highest
R-value when the ASNUP is 150. However, the CFLUS model performed much better at

Figure 7. Urban development potential in the Taiping Bay development zone: (a) the first-step urban
development potential; (b) the second-step urban development potential.
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predicting the potential areas of urban emergence. For example, when the ASNUP value is
50, the CFLUS model successfully identified 9 correct hexagons (17 correct hexagons in
total) in which new urban patches emerged from 2013 to 2019. When the ASNUP is 150,
the correct number of hexagons has dropped to 8 but only one incorrect hexagon
appeared in the simulation. When the ASNUP is set to 250, the CFLUS model predicted
the least amount of hexagon areas (8) and the correct hexagon (5).

The sensitivity analysis shows that the aggregate pattern of the simulation results
is sensitive to the change of the ASNUP. A low value of ASNUP results in a more
dispersed distribution pattern of new urban patches. Thus, the CFLUS model tends to
predict more hexagon areas and the correlation coefficients at the hexagon scale

Figure 8. Validation and sensitivity analysis of the CFLUS model. Panel a1, a2 are the ground truth,
Panel d1-f1 show the second-step development potential map, and the comparison maps between
actual and simulated urban emergence under different ASNUP values. Panel b2-f2 show the simulated
urban emergence and their aggregate hexagons. R is the correlation coefficient between ground truth
and simulation results at the hexagon grid scale. C shows the ratio between the number of correct
hexagons and the simulated hexagons.
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change accordingly. But because of the randomness in the simulation mechanism of
the CFLUS model, we didn’t find any obvious change law between R and the growth
of ASNUP. This validation process also indicates that the CFLUS model can effectively
detect the potential regions for new urban patches. Although the simulation accura-
cies are not high in the validation process, there is still room to improve the
performance of the CFLUS model if the future urban demand becomes larger.
Therefore, we continued to simulate the urban emergence and expansion from
2019 to 2030 with the CFLUS model.

Figure 9. Simulated urban pattern in the Taiping Bay development zone in 2024 and 2030.

Table 2. Simulating parameters of the CFLUS model.

Simulation periods 2013-2019
2019-2024 (early

stage)
2024-2030 (long

term) Symbols

Urban amount (square km) 0.3805 33.40 111.30 Demandurban
Slide window (pixel) 3 (fixed) 3 (fixed) 3 (fixed) -
Neighborhood (pixel) 3 3 3 N
Size of search window (pixel) 10 20/10 10 N’
Average size of the new urban patches
(pixel)

50/100/150/200/
250

800/2000 2000 APSizeurban
(ASNUP)

Threshold of local maxima 0.01 0.10 0.10 �
Unexpected threshold 0.01 0.1/0.05 0.05 σ
Urban development potential file 2nd step 2nd/1st step 1st step -
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4.2.2. Scenario development
Based on the transition potential given by the second-step fuzzy C-means algorithm, the
CFLUS model is employed to simulate future urban development in the Taiping Bay
development zone. We determine the land demand in 2019–2030 based on the expected
population growth. According to the master plan in Taiping Bay EDZ, the population
capacity of the early stage is 300 thousand and the construction area is 33.4 square
kilometers. The population capacity in the long term is 1 million, and according to the
ratio between construction area and population in the early stage, the construction area
in the long term is about 111.3 square kilometers. We defined the early stage as
2019–2024 because the ‘five-year plan’ is commonly used in the infrastructure develop-
ment of a region (Planning Commission 2008), thus the long-term stage can be defined as
2024–2030. Water areas are regarded as conversion constraints for protecting the future
environment, and converting these into an urban area is prohibited. The simulation
parameters and urban demands in corresponding years are listed in Table 2.

We used the second-step urban development potential (Figure 7(b)) during the early stage
periods (2019–2024) to simulate the emergence and development of the start zones. When
the simulated urban area is larger than one-third of the mask area, the current urban
development potential file is changed to the first step potential file. Note that in the period
2019–2024, when the simulated urban area is larger than one-third of the first stepmask area,
the urban development potential file is changed to the 1st step potential file, and other
parameters are set to the same as the parameters in the simulation period in 2024–2030
(Table 2).

4.2.3. Urban growth simulation and comparison with master plan
Under the driven of future urban demand, we used a land-use map in 2019 as the start
map for the simulation, together with the simulation parameters provided in Table 1, the
future urban development in the Taiping Bay development zone was projected using the
proposed CFLUS model, and compared the simulation results with planned urban land
provided by the master plan in Taiping Bay EDZ. Note that despite our simulation is based
on both planning traffic networks and current driving factors, the planned urban form
provided in the master plan is not involved in the modeling process of the CFLUS model.
Figure 9(b) shows the urban planning area delineated in the master planning and the
simulation result in the early stage (2019–2024). The new urban areas primarily appear at
the center of the Taiping Bay development zone, emerge along and nearby the central
avenue, which has a high consistency to the master planning. The northeast side of the
central avenue develops more urban areas than the urban area on the south side, this
trend also shows the same tendency as the master planning. However, the northern urban
block specified by the master planning is farther away from the central avenue than the
simulated urban patches at this stage, which indicates that the currently existing and
planning infrastructure still can’t fully support the urban pattern specified by the master
planning at this stage. The simulation result in 2030 shows that the urban area will cover
the central part of the study region, and a series of urban patches will appear around the
central urban block Figure 9(c). The simulated urban shape in 2030 has displayed the
possible future urban layout in the Taiping Bay development zone.
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5. Discussion

In this study, a CA-based model with an urban emergence mechanism and the FCM
algorithm were incorporated as a CFLUS model to enhance the simulation of the urban
emergence and expansion in EDZs. The combination of the CA model and the unsuper-
vised fuzzy clustering method enables the CFLUS model to identify development hot-
spots without analyzing the relationship between historical urban land use and various
driving factors. Although because the validation data is too few, the simulation accuracies
of the CFLUS model are not high in the validation process. But the CFLUS model still
showed its ability to efficiently detect the potential regions for new urban patches. So
there is still plenty of room to improve the performance of the CFLUS model if the future
urban demand becomes larger.

Due to the ability of the CFLUS model to discover the potential development areas and
predict probable urban patterns for regions that do not have any original urban areas. It
can help urban designers decide where to build the start zones for the EDZs by providing
specific locations. Furthermore, the rudiments of the future urban shape can be generated
in the simulation process, which can provide key information for planners on designing
the future urban form in EDZs.

Although economic development zones can be regarded as planned urban seeds in
the coming years, and this study is to evaluate the urban development potential and
spatially allocate the potential urban development with a seed-based CA model. But it
doesn’t mean that there is no need to simulate urban growth in the places that can be
regarded as planned urban seeds in the coming years. Because even though we know
these regions will have planned urban seeds in the future, but we still don’t know where
to put these planned seeds. Although EDZs are usually small scale area and planned to be
built, questions such as ‘where to put the future urban seeds within EDZs?’; ‘how to
manage the layout of urban shape in EDZs?’; ‘which parts of the EDZs are most likely or
best suited to build new urban areas?’ still exist. The CFLUS model can be used to answer
these questions.

As an adapted version of a CA-based FLUS model, the CFLUS model is developed to
simulate the urban emergence and expansion in EDZs that usually have a smaller area and
scale than the cities they belong to. It seems that the CFLUSmodel’s function and scope of
application are for a specific use and not as widely used as its predecessor FLUS model
which has been used in several simulations range from the global scale to city scale (Li
et al. 2017). However, it still has a broad application because China has been experiencing
a ‘development zone fever’ since 1990 (Yang and Wang 2008); thus, many development
zones or industrial parks will be established with the fast development of China. What’s
more, this method may contribute to the urban design and urban growth simulation of
the Xiong’an New Area (https://en.wikipedia.org/wiki/Xiong%27an), a new area of
national significance, following the Shenzhen Special Economic Zone and Shanghai
Pudong New Area in China.

6. Conclusion

EDZs are often used by planners to guide the development of new urban areas in fast
developing countries. Simulating urban development under the influence of different
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planning policies in these regions can help planners examine the consequences and
outcomes of varying policies. However, when there is no historical or original urban land
in the EDZs, simulation models are not available. To solve this problem, we developed
a CFLUS model to simulate urban growth in a place almost without urban or developed
areas.

The proposed CFLUS model was validated in the simulation period from 2013 to 2019.
The results showed that it can identify the potential regions for urban emergence. The
CFLUS model was applied to simulate the urban growth in the Taiping Bay development
zone during 2019–2030. The results show that the CFLUS model can predict urban
emergence and generate the layout of the future urban shape. Urban designers can
also obtain the probable long-term urban development trajectory in the Taiping Bay
development zone through the simulation of the CFLUS model. Understandably, the
proposed model can prevent the creation and adoption of poor urban designs during
the planning of development zones and can provide an analytical basis and scientific
support for exploring future development alternatives.
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