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Abstract

Cellular automata (CA) have been increasingly used to simulate urban sprawl and land use dynamics. A major issue in
CA is defining appropriate transition rules based on training data. Linear boundaries have been widely used to define the
rules. However, urban land use dynamics and many other geographical phenomena are highly complex and require
nonlinear boundaries for the rules. In this study, we tested the support vector machines (SVM) as a method for
constructing nonlinear transition rules for CA. SVM is good at dealing with nonlinear complex relationships. Its basic idea
is to project input vectors to a higher dimensional Hilbert feature space, in which an optimal classifying hyperplane can be
constructed through structural risk minimization and margin maximization. The optimal hyperplane is unique and its
optimality is global. The proposed SVM-CA model was implemented using Visual Basic, ArcObjects®™, and OSU-SVM. A
case study simulating the urban development in the Shenzhen City, China demonstrates that the proposed model can
achieve high accuracy and overcome some limitations of existing CA models in simulating complex urban systems.
© 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

Since first introduced by Ulam (1976) in 1948,
cellular automata (CA) have been widely used to simu-
late nonlinear complex systems (Wolfram, 1984; Itami,
1994). Recently, there is an increasing application of
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CA in the simulation of urban systems. Some
important example studies include Batty and Xie’s
(1994, 1997) pioneering work that simulates land use
dynamics in the city of Buffalo, NY with CA and GIS;
Clarke’s et al. (1997) simulation of urbanization of the
San Francisco Bay Area; White and Engelen’s (1997)
use of constrained CA in simulating land use changes
in Cincinnati, OH; and Li and Yeh’s (2001, 2002)
development of a neural network-based CA model for
simulating rapid urban development in Southern
China. These studies have demonstrated CA as a
powerful tool for simulating complex urban dynamics.
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CA models can generate complex global patterns
by using simple local rules. These rules determine
how a cell will evolve under certain conditions.
While the rules are only applied at the neighbor-
hood level—the notion of neighborhood is central
to the CA paradigm (Couclelis, 1997)—they should
represent the impact of factors at different (i.e.,
local, regional, and global) spatial scales (Wu and
Webster, 1998; Li and Yeh, 2000). The transition
rules are the key inputs in a CA model. Tradition-
ally, the rules have been defined in linear forms,
using methods such as multi-criteria evaluation
(MCE) and logistical regression (Wu and Webster,
1998; Wu, 2002). Apparently, however, linear
transition rules cannot adequately accommodate
the nonlinear characteristics of complex urban
systems, and there is a need for nonlinear transition
rules. To address this problem, Li and Yeh (2002)
define transition rules using neural networks, which
improve the capability of CA in dealing with
nonlinear complexity. However, they found it
difficult to interpret the parameter values and the
inference process (Li and Yeh, 2004). Moreover, the
training of neural networks may result in local
rather than global optimization (Vapnik, 1998). As
neural networks are not well-controlled learning
machines (Vapnik, 1998), there is research interest
in exploring other methods for defining nonlinear
transition rules for CA.

This paper presents a study that tests the support
vector machines (SVM) as a method for defining
nonlinear transition rules for CA. SVM is a data
mining technique whose performance has been
proven in many applications, such as credit scoring
(Baesens et al., 2003), financial time series predic-
tion (Gestel et al.,, 2001), spam categorization
(Drucker et al., 1999) and brain tumor classification
(Lu et al., 1999). The strength of this technique lies
with its ability to model nonlinearity (Martens et al.,
2007). That SVM training always finds a global
solution is in contrast to the case of neural
networks, where many local minima usually exist
(Vapnik, 1998). SVM operates by projecting input
vectors to a Hilbert space in which they can be
linearly classified by a hyperplane. The hyperplane
is derived by applying a kernel function to certain
support vectors (Vapnik, 1998; Joachims, 2002;
Ambriola et al., 2003). In the SVM-CA model
developed in this study, the transition rule is
constructed by combining the output from SVM
and other contextual and constraint information.
The final output from the transition rule is a

development probability. This proposed model was
tested using urban development data from Shenzhen
City, China, for the period 1988-2004. The model
was also used to forecast the development status of
the city in 2010.

2. Support vector machines and SVM-CA urban
model

2.1. Support vector machines (SVM)

SVM projects input vectors to a higher dimen-
sional Hilbert feature space, where an optimal
separating hyperplane can be constructed (Chang
and Lin, 2003; Cherkassky and Ma, 2004; Webb,
2002). A linear separation in the Hilbert space can
be constructed using kernel functions. Based on the
principles of structural risk minimization (SRM)
and maximum classification margin, SVM mini-
mizes the upper bound of the expected general-
ization error, which leads to a global optimization
(Vapnik, 1998). This section outlines the procedure
and readers are referred to Vapnik’s (1998) for
details.

Consider the scenario of separating a set of
training vectors belonging to two separate classes,
T = {(x1,y1),(x2,¥2), ..., (x, y)}, where x;ex = R",
yiey{l,—1}, i=12,...,1, where y; is the class of
sample 7, and x; represents a group of attributes of
sample i. In our case, y; indicates whether cell i will
be converted to an urban area or not, and x;
represents the variable relevant to that conversion.

A separating hyperplane H can be created:

H:w-x+b=0, (1

where w is a weight vector and b is a scalar. The
separating hyperplane is the optimal hyperplane if
all training data are separated without error and the
distance between the closest vector and the hyper-
plane is maximal. The hyperplane can be described
as follows:

w-x+b=>1 if y, =1,

w-x+b< —1 if y=-1, )
which is equivalent to
yw-x+b=1, i=1,...,L 3)

The separating hyperplane can then be formalized
as a decision function:

f(x) =sgn(w- x4+ b). 4)
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The two parameters of the separating hyperplane
decision function, w and b, can be obtained by
solving the following optimization problem:

. 1 !
min L(w,b,¢) = 5 (w -W)+C<;éi> (5)
subject to
yiw-x+b=1-¢, i=1,...,1

. (6)
&=0, i=1,...,L

The variables ¢&; are slack variables, representing
the error in the classification. The first part of the
objective function tries to maximize the margin
between the two classes in the feature space,
whereas the second part minimizes the misclassifica-
tion error. The positive real constant C is a tuning
parameter in the algorithm.

The solution to this optimization problem is given
by the saddle point of the Lagrange function:

!
L(w,b, &) = L(w,b,8) = Y olylwx +b] — 1+ &3}
i=1

!
- Z iia (7)
i=1

where o; are Lagrange multipliers. The Lagrangian
has to be minimized with respect to w and b and
maximized with respect to «;>0.

The Lagrange multipliers o; are then determined
by the following optimization (dual problem):

1L d I
m;ni Viyiaiai(X; - x;) — Z a; (8)
i=1 j=1 =1
subject to
!
>y =0, ©)
i=1
O<a;i<e, i=1,...,1L (10)

Let ag = (o), ...,a)) be a solution to this optimi-
zation problem. Then the normal of the vector wy
corresponding to the optimal hyperplane equals

wol> =2W (@) = Y

support vector

oc?ocjo(x,- X))y (1)

The separating rule, based on the optimal hyper-
plane, is the following decision function:

/
£(x) = sgn [Z Yid(x;-X)+ bo (12)

i=1

where x; are the support vectors, a’ are the
corresponding Lagrange coefficients, and the con-
stant b is defined as

bo = 4{(wo - X*(1)) + (wp - x*(=1))], (13)

where x*(1) are some support vectors belonging to
the first class and x*(—1) are some support vectors
belonging to the second class.

If the training data are linearly separable, then a
set of {w, b} pairs can be found such that the
constraints in Eq. (4) are satisfied (Fig. 1(A)).

If the training data cannot be classified linearly
then a projection function @(x) is used to map the
training data from the original data space x to a
Hilbert space X (Vapnik, 1998). In this higher
dimensional space X, the linear SVM formulation of
Eq. (4) can be applied (Figs. 1(B and C)) so that the
data can be linearly separable. In the SVM
optimization function, the feature information in
the training data appear in the form of inner
products (x;-x;) (Eq. (8)). This is also the case in
the decision function (Eq. (12)). In the Hilbert space
X, (x;- x;) 1s replaced by inner products ®(x;) - P(x)).

It is wusually difficult to acquire projection
function @(x) due to its complexity. However,
d(x;)- P(x;) can be replaced by kernel functions
according to Hilbert-Schmidt theory (Vapnik,
2000). Hence the optimization problem of Eq. (8)
with the same subjections becomes

!
mainéz Zy,y,-a,-ajk(x,- - Xp) — Z aj, (14)

i=1 j=1 j=1

where k(-) is the kernel function. The decision
function (Eq. (12)) then becomes

/
S =sgn| > yalk(xi, x) + b (15)
i=1
and the constant by in Eq. (13) becomes
!
bo = yi —_ Zyia?k(x,-,x_,-). (16)

i=1

Many kernel functions can be used for this
purpose, such as the polynomial function k(x,y) =
(x-y+1)’, the radial base function k(x,y)=
exp[—(x—»)*/26%], and the sigmoid function
k(x,y) = tanh(kx - y—0).



Q. Yang et al. | Computers & Geosciences 34 (2008) 592-602

X — w 2 Separating hyperplanesz
1= X of optimazition

595

o)
_ 8 o
Xz_'Xz2 R oo JNe]
— LT o
L) N
Projection . X

Fig. 1. Linear classification and nonlinear classification spaces, and mapped into linear classification space. (A) Linear classification,

(B) nonlinear classification, and (C) linear classification after projection.
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Fig. 2. Nonlinear classification boundaries between non-urban and urban cells.

2.2. The SVM-CA urban model

When using CA to simulate urban land use
dynamics, the transition rule (the classification

boundary that determines whether a non-urban cell
will convert into an urban cell) can be highly
complicated, and linear equations become insuffi-
cient (Fig. 2). In this study, we used SVM to
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construct nonlinear transition rules for the CA
simulations. Specifically, in each iteration of simula-
tion, the urban development probability is esti-
mated based on the output from the decision
function (Platt, 1999; Ana et al., 2004):

1
Px = ,
1+ exp{—[>_1_ i@k (xi, x) + bol}

where p, is the urban development probability of
vector x in the current simulation iteration; x
contains the values of the considered variables of
the cell that needs to be classified; x; the ith support
vector; k( - ) the kernel function; and / the number of
support vectors. In this study we used a radial base
function for k:

(17)

k(x, x;) = e,(”x,x,,”z/zaz)’ (18)

where ¢ is the width of the radial base function.
Considering the influence of neighborhood, the
urban development probability of cell k in iteration
t, Pr.1» can be refined as follows:
1

= X
1+ CXP[—(ZL]J’ia?e_(”xk_x"”z/z"z) + bo)]

t
Diet ‘Q3><3,k=

(19)
where xy is the vector of spatial variables of cell k;
Q% . 5« the total number of urban cells within the
3 x 3 neighborhood of cell £ in iteration f; and
|xx—x;|? is calculated as follows:

T
l1xx — xil1* = (o — x)" - (ke — x;)

where
T
Xr = (Xk1, Xk2, - - - » Xko)
and
T
Xi = (xil,xi2: R (20)

In the above equation x;, is the oth spatial
variable of cell k and x;, is the oth spatial variable of
support vector i.

Some variables can be used to represent con-
straints to land development. For example, devel-
opment is not allowed in lands protected for
agricultural or ecological purposes, and is impos-
sible in rivers and mountains. With the constraint
factors considered, the urban development prob-
ability can be revised as (Wu, 1998)

1
T exp[—(Xi e (sl 29 4 b))

Pt

m

X Q4 3 X HconskJ, (21)
j=1

where cons;; is the jth constraint factor that is
applicable to cell k and m the number of constraint
factors. The value of a constraint factor varies
between 0 and 1.

A stochastic disturbance term can be added to
represent unknown errors, which may help to
generate a more realistic pattern. The error term
(RA) is defined as (White and Engelen, 1993)

RA =1+ (—In yp)*, (22)
where 7 is a random number within the range of 0
and 1; and « is a factor controlling the magnitude

of the perturbation. The urban development proba-
bility can then be revised as

Pro =1+ (=In )]
% 1
1+ exp[—(3;_ pale(wlP/20) 4 )]

m
t
X Q5,54 X Hconsj,k. (23)
J=1

In iteration ¢, Py, is determined as follows:

development,

{pk’IZOC

: (24)
Otherwise undevelopment,
where o is a predefined threshold.

The simulation of urban development is con-
ducted by running the model iteratively until certain
conditions are satisfied, e.g., the total amount of
simulated urban land equals the actual amount of
urban land. Fig. 3 shows the procedure of simulat-
ing urban development using the SVM-CA urban
model.

3. A case study in Shenzhen City
3.1. Study area and data

The proposed model was used to simulate the
urban development in Shenzhen City, China, a city
that has experienced drastic urban expansion in
recent years. The expansion has been thoroughly
monitored using remote sensing (Yeh and Li, 2001;
Li and Yeh, 1998). The spatial variables used in this
simulation were derived from existing remote
sensing and GIS data (Table 1). Specifically, the
information about urban development was derived
from the land use data that were generated through
classification of Landsat TM images. The distance
variables were calculated using the FEucdistance
function in ArcGIS®. The number of developed
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Fig. 3. SVM-CA model for simulation of urban dynamics.

Table 1
Variable in SVM-CA model

Target y: urban development (1: converted to urban
variable land; —1: not converted
Proximity X distance to the major (city proper) urban
variable areas (unit: m)
X,: distance to the closest town centers (unit: m)
x3: distance to the closest roads (unit: m)
x4 distance to the closest railways (unit: m)
xs: distance to the closest expressways (unit: m)
Local Q% 5 number of urban cells in the 3 x 3
variable neighborhood (0-9 pixels)
Constraint c;: water (0, water;1, others)
variables ¢,: forest (0, forest;1, others)

c3: urban green land (0, urban green land;1,
others)

¢4 crop protection land (0, crop protection
land;1, others)

cells in the 3 x 3 neighborhood was counted using
the Focal function of ArcGIS®. The data for the
constraint variables were acquired from govern-
mental agencies or through classification of remo-
tely sensed data. The initial state for the simulation
was created based on the classification of the 1988
TM image.

3.2. Simulation program

The proposed SVM-CA model was implemented
using Visual Basic 6.0, ArcObjects®™, and an SVM
package, OSU-SVM. ArcObjects provides access to
spatial data, as well as tools for distance calculation
and focal operations. OSU-SVM is an SVM toolbox
developed at The Department of Electrical and
Computer Engineering, Ohio State University,
USA. It contains fundamental SVM, n-SVM, and
one-class SVM classifiers for regression and classi-
fication, and is capable of dealing with large training
sets (Ma, Zhao, and Ahalt, 2002, OSU SVM
Classifier Matlab Toolbox, http://www.kernel-
machines.org/, last accessed on May 23, 2000).
OSU-SVM can be downloaded from http://source
forge.net/projects/svm (last accessed on March 29,
2007). The CA modeling and the communication
between different components of the model were
programmed using Visual Basic.

3.3. Calibration (training)
Land development data from 1988 to 1993 were

used to train the model. Since the images are large, a
stratified sampling method (Congalton, 1991) was
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used to ensure that the training data had a reason-
able size. The random stratified sample points were
generated using ERDAS IMAGINE®. Their values
for the considered spatial variables were then
retrieved using the sample function of ArcGIS™.
The sample set was used to obtain values for ¢ in
Eq. (10) and for o, %, by in Eq. (23). Particularly, ¢

Table 2
Part support vectors and «a;*, y;, y.a;*

and ¢ were acquired using the grid-search method
(Martens et al., 2007) and the search results are
c=1 and g=1. Table 2 lists some acquired
support vectors and their corresponding Lagrange
coefficients @, y;, and y,~a,~0. When ¢, o, and o are
known, b, can be calculated with Eq. (16). Based on
Eq. (23), the urban development probability of cell

X1 X2 X3 Xq Xs a* Vi yiai*
25,982.00 2015.50 531.50 1501.00 27,934.00 0.94 1 0.94
18,474.50 1790.50 141.50 1050.00 14,385.50 0.94 1 0.94
24,514.50 5845.50 3200.50 4160.00 20,850.00 1.00 1 1.00
21,662.00 3448.00 1503.50 3252.50 8019.00 1.00 1 1.00
19,769.00 4452.50 3451.50 3708.50 11,130.50 0.98 1 0.98
26,341.00 5543.00 3200.00 850.00 26,972.50 0.77 1 0.77
25,460.00 1557.50 4830.50 6053.00 16,204.00 0.94 1 0.94
26,580.50 5402.00 3510.50 2433.00 24,446.50 0.96 1 0.96
19,909.00 3900.00 985.00 1520.50 22,106.00 0.25 1 0.25
16,523.00 934.00 50.00 1803.00 19,234.50 0.98 1 0.98
19,769.00 4452.50 3451.50 3708.50 11,130.50 0.21 1 0.21
24,416.50 4013.00 3688.00 2823.00 16,901.00 0.25 1 0.25
30,633.50 2728.00 971.00 2886.00 17,824.00 0.81 -1 —0.81
25,230.00 2862.50 269.50 1553.00 12,410.50 0.50 -1 —0.50
10,879.50 5301.00 728.00 2751.50 4699.00 0.76 -1 —0.76
2169.00 3699.00 250.00 1700.00 4826.00 0.53 —1 —0.53
9917.50 4114.00 750.00 3371.00 2732.00 0.81 -1 —0.81
16,178.00 3721.50 900.00 364.00 7115.00 0.75 —1 —0.75
8841.00 4733.50 2522.50 550.00 8492.50 0.79 -1 —0.79
13,371.00 4855.00 652.00 50.00 996.50 0.81 -1 —0.81
Table 3
SVM-CA simulation results for some cells
X1 X> X3 X4 X5 X¢ Actual value Probability
1812.00 1834.50 471.50 1600.00 600.00 5 1 0.85
2836.50 2504.50 353.50 856.00 1350.00 4 1 0.79
7645.00 2988.50 756.50 2074.00 4258.00 1 1 0.38
9875.00 3516.50 1601.00 1710.50 3300.50 0 0 0.23
27,130.00 3529.00 2084.00 16,348.00 2598.50 0 0 0.02
30,051.00 5233.00 3760.50 14,865.50 6720.50 0 0 0.15
31,769.00 3610.00 1650.00 25,187.50 1209.50 0 1 0.64
30,171.50 814.00 515.00 27,178.50 672.50 0 1 0.59
26,501.00 3189.50 2850.00 18,166.00 7658.00 0 0 0.44
24,701.00 4313.50 7110.50 13,821.00 5784.50 0 0 0.31
20,751.50 2402.50 2511.00 8299.00 1543.50 0 0 0.03
18,230.50 4523.50 1718.50 18,173.00 2294.00 0 0 0.12
22,235.50 1947.50 1242.00 24,852.00 250.00 0 0 0.25
15,538.50 3699.00 1930.00 15,118.50 3413.00 0 0 0.38
9209.00 4991.00 550.00 6239.50 3970.00 2 1 0.71
11,787.50 4430.00 2722.50 2280.50 854.50 0 0 0.17
16,141.00 756.50 180.50 640.50 3335.50 2 1 0.49
15,366.50 5661.00 1188.50 17,800.00 1150.00 4 1 0.51
14,117.50 5377.00 2039.50 7114.00 559.00 0 0 0.07
13,022.00 2997.00 743.50 9637.50 710.50 0 0 0.34
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k in iteration ¢ was obtained as follows: We conducted heuristic experiments to determine
the value for the predefined threshold « in Eq. (24),
Pry=[1+(=In "] arriving at a value of 0.65 for this parameter. The
1 simulation terminating condition was set such that
X 1+ CXP[—(ZL1 e 05Xkl )(—0.19154)] the amount of simulated land conversion is equaI. to
m that of the actual urban development occurring

x Q3 x [ [ consi. (25) during the simulated period.

J=1

Urban 0 6 12km

Fig. 4. Simulation of urban dynamics from 1988 to 2004 based on SVM-CA model. (A) Actual urban land of Shenzhen City and
(B) simulated urban land of Shenzhen City.
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3.4. Simulation result

Table 3 shows specific simulation values for some
cells and Fig. 4 presents a comparison of the actual
urban development detected from remotely sensed
data and the simulation results from the SVM-CA
model. Visual inspection indicates that the simula-
tion generated an urban morphology similar to the
actual situation. For example, both maps show that
the urban land development was mainly distributed
around urban centers in the early 1990s, and spread
along roads in the later years.

Cell-by-cell comparison was typically used to
evaluate the simulation accuracy (Clarke’s et al.,
1997; Wu, 2002; Li and Yeh, 2002, 2004). It evaluates
the similarity between the actual and simulated
situations at the scale of a single cell. In this study,
cell-by-cell comparison was used to evaluate the
simulation accuracy too. The results of the cell-by-
cell comparison for two periods, 1988-1993 and
1994-2004, were given by the confusion matrices in
Tables 4 and 5, respectively. For 1988-1993, the
accuracy for developed land is 67.88% and the
overall accuracy is 87.25%. For 1994-2004, they
become 71.09% and 84.90%, respectively. The kappa
coefficients were calculated to quantify the actual
degree of agreement (Cohen, 1960; Campbell, 1987;
Fung and LeDrew, 1988; Congalton, 1991). The
coefficient was 0.70 for 1988-1993 and 0.68 for
1994-2004. Considering the training data were only
from the 1988 to 1993 images, the similar accuracies
for the two periods might be an indication that the
development mechanism is relatively stable in this
region. This, in turn, provides justification for using
the model trained by the 1988—1993 data to forecast
future development.

To further assess the performance of this
particular SVM-CA model, we applied a logistic

Table 4

Confusion matrix between actual and simulated urban in 1993
based on SVM-CA (number in each category refers to number of
pixels in that category)

Simulation
Non-urban Urban Accuracy (%)
Actual
Non-urban 495,838 9388 98.14
Urban 91,229 192,804 67.88
Overall 87.25
Kappa 0.70

Table 5

Confusion matrix between actual and simulated urban in 2004
based on SVM-CA (number in each category refers to number of
pixels in that category)

Simulation
Non-urban Urban Accuracy (%)
Actual
Non-urban 432,064 22,391 95.07
Urban 96,781 238,023 71.09
Overall 84.90
Kappa 0.68
Table 6

Confusion matrix between actual and simulated urban in 1993
based on LR-CA (number in each category refers to number of
pixels in that category)

Simulation
Non-urban Urban Accuracy (%)
Actual
Non-urban 485,233 75,166 86.58
Urban 99,304 129,056 56.39
Overall 77.83
Kappa 0.44

regression-based CA (LR-CA) suggested by Wu
(1998) to the same sample set extracted from the
1988 to 1993 TM imageries. Table 6 is the error
matrix of the LR-CA. A comparison of Table 4 with
Table 6 shows that the proposed nonlinear SVM-
CA significantly outperforms the linear LR-CA.
Moreover, the LR-CA may have multi-collinearity
problems when the variables are highly correlated
(Wu, 1998).

Assuming stability in the development mechan-
ism in the Shenzhen area, we use the model
calibrated with the 1988—1993 data to project future
urban development there. The projection results for
2004-2010 are given in Fig. 5.

4. Conclusion

This paper presents an experiment using SVM to
obtain nonlinear transition rules for CA simulation
of urban land use dynamics. The basic idea of SVM
is to project nonlinear input vectors to Hilbert
space, where the projected vectors can be classified
linearly using an optimal hyperplane. In Hilbert
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Fig. 5. Simulation of urban land use for 2010 based on SVM-CA model.

space, the decision function of the optimal separat-
ing hyperplane is constructed using the kernel
function and the support vectors. The decision
function of the optimal hyperplane is then used to
form the transition rule for CA. All the parameter
values in the transition rule are derived from
training data.

The model is applied to the simulation of urban
development in Shenzhen City, a fast-developing,
new city in Southern China. It simulates the urban
development of this city from 1988 to 2004 and also
predicts development for the years 2004-2010. The
validation results show good conformity between
the actual and simulated urban development pat-
terns, and the proposed method achieved a con-
siderably higher overall accuracy when compared
with the linear logistical regression model. In
addition, the training process of SVM is based on
SRM and maximal margin distance theory, which
leads to a globally optimal solution, an advantage
over artificial neural networks. Thus we conclude
that the CA model based on SVM is a promising
tool for simulating urban growth.
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