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Abstract. This paper presents a new cellular automata (CA) model which uses artificial neural
networks for both calibration and simulation. A critical issue for urban CA simulation is how to
determine parameter values and define model structures. The simulation of real cities involves the use
of many variables and parameters. The calibration of CA models is very difficult when there is a large
set of parameters. In the proposed model, most of the parameter values for CA simulation are
automatically determined by the training of artificial neural networks. The parameter values from
the training are then imported into the CA model which is also based on the algorithm of neural
networks. With the use of neural networks, users do not need to provide detailed transition rules
which are difficult to define. The study shows that the model has better accuracy than traditional CA
models in the simulation of nonlinear complex urban systems.

1 Introduction

Cellular automata (CA) are powerful spatial dynamic modeling techniques that have
been widely applied to model many complex dynamic systems. Recently, a variety of
urban CA models have been developed to simulate either artificial or realistic cities
(Batty and Xie, 1994; Clarke et al, 1997; Li and Yeh, 2000; White and Engelen, 1993;
Wu, 1998; Wu and Webster, 1998). Cities, like most geographical phenomena, are
complex nonlinear systems involving spatial and sectoral interactions which cannot
easily be modeled with the functionalities of current GIS software (Batty et al, 1999).
CA-based approaches are useful in the study of urban and regional spatial structure
and evolution. Modeling cities with CA is a new approach, although it has distant
roots in geography in the work of Hégerstrand (1965) and Tobler (1979) (Clarke and
Gaydos, 1998).

A critical issue in CA simulation is the provision of proper parameter values or
weights so that realistic results can be generated. Real cities are complex dynamic
systems that require the use of many spatial variables in CA simulation. Each spatial
variable makes a contribution to the simulation and its influence is determined by its
associated parameter or weight in the simulation. A variable associated with a larger
parameter value usually indicates that it is more important than other variables with
small parameter values. There are usually many parameter values to be defined in a
CA model and the results of CA simulation are very sensitive to the parameter values
(Wu, 2000).

Empirical data can be used to calibrate CA models to find suitable parameter
values. Calibration is important to the generation of the best fit to actual urban
development. Calibration procedures have been discussed in nonlinear dynamic spatial
interaction models (Lombardo and Rabino, 1986). Unfortunately, at present there is no
good CA calibration method because of the complexity of urban systems. There are
only very limited studies addressing calibration issues in CA simulation. Wu and
Webster (1998) use multicriteria evaluation (MCE) to define the parameter values for
CA simulation heuristically. Calibration can also rely largely on repetitive runs of the
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same model with different combinations of parameter values (Wu, 2000). Clarke et al
(1997) consider visual tests to be useful to establish parameter ranges and to make
rough estimates of these values. The impact of each parameter is assessed by changing
its value and holding other parameters constant.

Clarke and Gaydos (1998) have provided a more elaborate calibration method by
statistically testing the observed against the expected. The method is to find which set
of parameter values can lead the model to produce the best fits. The set of parameter
values with the best fits is then used for prediction. However, there are numerous
possible combinations of parameter values. Their experiments have tried more than
3000 combinations which need a high-end workstation running several hundred hours
to perform the calibration. This method is very time consuming because it needs to
compare all possible combinations of parameter values. Another problem is that the
combinations may be extraordinarily huge when there are many variables and it is hard
to develop a sound search procedure for the calibration.

In this study we present a new method based on neural networks to deal with the
complicated calibration issue in CA urban simulation. It has a number of advantages
over other methods. The calibration procedure is simple and convenient because the
parameter values are obtained automatically by using neural networks. The method is
made more robust by using the well-developed procedure of back-propagation training.
Moreover, the model is able to deal with complex interactions among variables.
Variables are not required to be independent of each other because a neural network
is used. The model structure is much simpler and more stable compared with tradi-
tional CA models. This paper will also demonstrate that a neural-network-based CA
model can easily be developed within a GIS environment. Spatial variables can be
conveniently retrieved from the GIS and used as inputs to the neural network for
urban simulation.

2 Artificial neural networks (ANN)

Artificial neural networks (ANN) have been widely and seemingly extremely success-
fully applied in many disciplines with a high degree of difficulty (Openshaw and Open-
shaw, 1997). ANN are quite adapted to spatial problems that may involve wrong and
poor data. The following are some of the advantages of neural networks that have been
identified by Openshaw and Openshaw (1997) and Openshaw (1998):

(a) The structure of algorithms enables neural networks to be robust and noise resistant
regardless of poor data.

(b) They can solve highly nonlinear problems in complex systems.

(c) The method is rather simple because no exact equations or expressions are
required.

(d) The best level of performance can be obtained.

(e) There are no restrictions about using nonnumeric data.

(f) They adapt to nonnormal frequency distribution.

(g) Mixtures of measurement types can be used.

(h) They can use many variables some of which may be redundant.

The basic processing units in a neural network are the so-called neurons or nodes
which are organized in a couple of layers. All the neurons, except those in the input
layer, perform two simple processing functions—collecting the activation of the neu-
rons in the previous layer and generating an activation as the input to the next layer.
The neurons in the input layer only send signals to the next layer.

The functions for addressing the interactions between neurons are very simple. If i
equals a sender neuron in the input layer and j is a receiver neuron in the next layer,
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the collection function is given as:
net, = Y W1, ey

where ; is the signal from neuron i of the sender layer, net; is the collection signal for
receiver neuron j in the next layer, and W, is the parameter or weight to sum the
signals from different input nodes. The receiver neuron creates activation in response
to the signal net;. The activation will become the input for its next layer. The activation
is usually created in the form of a sigmoid function:

1

exp(—net)’ 2

The activation will be passed to the next layer as the input signal, and equations (1)
and (2) will be used to process the signal again. These procedures will continue until
the final signals are obtained by the output layer.

The crucial part of neural networks is to determine the adaptive weights which are
used to address the strengths of network interconnection between associated neurons.
The values of the weights are not set by the users but rather are determined by the
network during training. One of the most popular methods is a back-propagation
learning algorithm which iteratively minimizes an error function over the network
(calculated) outputs and desired outputs on the basis of a training data set (Foody,
1996; Rumelhart et al, 1986). The clearest advantage of the back-propagation neural
network is that the learning algorithm is not programmed, a priori, into the network
(Hepner, 1990). The weights are initially set by a random process. The error, computed
as the difference between calculated and desired activation for the output neuron, is
propagated back through the network and used to adjust the weights. The process of
adjusting the weights according to the errors is repeated over many iterations until the
error rate is minimized or reaches an acceptable level.

Once the optimized weights have been obtained from the training data set, the
network is ready for classification or prediction. Classification or prediction is based
on the activation level in the output layer. The activation level of a neuron lies on a
scale of 0 to 1 which reflects the variation from extremely low to extremely high
strength of membership. In the classification, for example, a case will be allocated to
the class associated with the output neuron with the highest activation level.

3 The artificial neural-network-based CA model (ANN-CA)

In this model, the transition rules of CA simulation are represented by the neural
network calibrated by the empirical data. The essential part of the transition rules in
general CA models is to estimate the conversion probability between states. For example,
a simple urban CA model can be expressed by the following neighborhood-based
transition rules (Batty, 1997):

if any cell {x £ 1, y £ 1} is already developed,
then Py{x, y} = ZPd{i,j}/S, and
jeQ
if P;{x, y} > some threshold value,
then cell {x, y} is developed with some other probability p{x, y},

where Py{x, y} is the urban development probability for cell {x, y}, and cell {i,;j} is
the set of all the cells which are from the Moore neighborhood € including the cell
{x, y} itself. The probability of a cell being developed is decided by the number of
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already developed cells in the neighborhood. Usually, there is a higher chance of a cell
being developed if it is surrounded by more developed cells.

Simulation based on a single factor of developed cells in the neighborhood cannot
address complicated urban systems. More factors have been incorporated in CA
models to improve simulation performance for either hypothetical or realistic applica-
tions. Distance, direction, density thresholds, and transition or mutation probabilities
have been included in the transition rules of various CA models (Batty and Xie, 1994;
1997). Various types of constraints based on site features can also be used to regulate
development patterns for land-use planning (Li and Yeh, 2000; Yeh and Li, 2001a).
An increase in the number of variables will result in an increase of the number of
parameters in CA models. There are few concerns about the exact values of parameters
if CA models are used only for hypothetical studies. However, when CA models are
applied to the simulation of real cities, suitable parameter values have to be determined
through some calibration procedures.

MCE techniques are frequently required to handle multiple factors in CA simu-
lation. For example, a linear weighted combination of a series of spatial factors (such as
various distances to urban centers and transportation lines, and the amount of develop-
ment in the neighborhood) have been used to estimate development probability for CA
simulation (Wu, 1998; Wu and Webster, 1998). MCE may be useful when weights cannot
be determined by using empirical data. There are uncertainties because the weights are
heuristically or subjectively defined in most situations. No strict calibration procedure is
involved in the method. Moreover, MCE will face difficulties in determining the values
of the weights when there are many factors. The method also cannot represent com-
plicated nonlinear surfaces. It has been suggested that traditional methods of overlay
and MCE can be replicated or even replaced by neural networks (Zhou and Civco, 1996).

The ANN-CA model consists of two separate parts—using the neural network to
obtain the parameter values automatically based on training data, and using the neural
network to carry out CA simulation based on these parameter values (figure 1). The
first part involves the calibration (training) procedure to obtain optimal weights using
empirical data. Remote sensing data are used to provide empirical data about urban
development. GIS analysis is needed to obtain site attributes (attractiveness) for each
cell. Neural networks can be used to reveal the relationships between development
probability and site attributes. The training procedure should be outside the simulation
process for computation efficiency. The parameters obtained from the training will be
input to the CA model. The second step is to carry out CA simulation which is also
based on the algorithm of neural networks. At each iteration, neural networks will
determine the development probability which is subject to the input of site attributes
and weights.

Site attributes determine development probability in CA simulation. These attrib-
utes include the amount of development in the neighborhood and various types of
proximity attractiveness (Wu and Webster, 1998) and GIS is useful for obtaining this
type of information. The integration of GIS and modeling can be especially useful in
solving issues arising from environmental problems (Clarke and Gaydos, 1998; Li and
Yeh, 2000). CA models can be easily integrated with GIS to generate realistic simu-
lations. Operational CA models need access to real databases for better simulation
performance. GIS provides powerful functions to store, retrieve, analyze, and display
spatial data. Information about constraints can be retrieved from GIS databases and
input into CA models for generating rational development patterns and achieving
urban sustainability (Li and Yeh, 2000; White et al, 1997).

A series of spatial variables can be easily defined on the basis of the buffer and
neighborhood functions of GIS software. A cell may have # site attributes (variables):
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Figure 1. A dynamic cellular automaton (CA) model based on neural networks.
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Urban growth is dependent on these variables which may include various types of
proximities, amount of development, and site conditions. A regression model or
MCE method may not be the best way to reveal relationships because urban systems
involve complex nonlinear processes. Neural networks can be designed to estimate
development probability at each iteration of the CA simulation. The neural network
may have three layers: one input layer, one hidden layer, and one output layer. The input
layer has n neurons corresponding to the n variables. The hidden layer may also have n
neurons. The output layer has only one neuron which indicates development probability.
At each iteration, the site attributes of a cell will be input into the first layer and the
neural network will determine its development probability at the output layer.
Experiments indicate that it will be more appropriate for all original data to be
converted into a range between 0 to 1 before they are input into neural networks
(Gong, 1996). This is similar to data normalization in that it uses maximum and
minimum values in scaling the original data set. Scaling variables treats them as
equally important inputs to neural networks and makes them compatible with the
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sigmoid activation function that produces a value between 0 and 1. The following linear
transformation is used:

, S; — minimum

S, = )

maximum — minimum

GIS and remote sensing can be used to obtain the training data set. An easy way is
to obtain land-use change information from the classification of multitemporal satellite
images (Li and Yeh, 1998). In the training data set, the desired (target) value in the
output layer is recorded as 1 for a developed cell and 0 for a nondeveloped cell. The
network output value will be obtained after a set of site attributes has passed through
the network. The output value is expected to be close to the desired value according
to the learning process by automatically adjusting the weights. The output value is
within the range 0 to 1. When the network is used for prediction, the output value can
be regarded as a development probability. During the prediction, an output value
closer to 1 indicates higher development probability and one closer to 0 indicates
lower development probability. The learning process can effectively let the network
estimate development probability using a set of site attributes.

A new type of CA model can be derived based on the algorithm of neural net-
works. The advantage is that the parameters which have been obtained automatically
from the training procedure can be applied directly to the ANN-CA simulation. Users
do not need to define the parameters manually. This simulation is loop based. At each
iteration, the site attributes are sent through the network to obtain the development
probability of a cell. The development probability is then used to determine if the cell is
selected for development or not according to a predefined threshold value.

The algorithm for the CA model is devised using a neural network. In the neural
network, the signal received by neuron j of the hidden layer from neuron i of the first
input layer for cell x is calculated from:

net)(x, 1) = Y W, S/(x. 1), ©)
where x is a cell, net/(x, ¢) is the signal received for neuron j of cell x at time ¢, and
Si(x, 1) is the site attributes for variable (neuron) i. The activation of the hidden layer
for the signal is:

1

. 6
1 + exp[—net;(x, 1)] ©
The development probability (#) for cell x is then calculated from:
1
Py(x. 1) = Y W )

T e ey (v, 1]

A stochastic disturbance term can be added to represent unknown errors during
the simulation. This can generate patterns that are closer to reality. The error term
(RA) is defined as (White and Engelen, 1993):

RA = 1+ (—1Iny)*, (®)

where y is a uniform random variable within the range 0 to 1, and « is the parameter
controlling the size of the stochastic perturbation; o can be used as a dispersion factor
in the simulation. The development probability is revised as:
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1
P/ = RA f
a (X, 1) Z " 1 4 exp[—net;(x, 7)]

] 1
[1+ (=Iny) ]2,: i + exp[—net;(x, 1)]’ ’

Finally, a predefined threshold value is used to decide whether a cell is to be
developed or not according to the probability Pj(x,) at each iteration. If a cell has
a probability greater than the threshold value, it will be converted for development. The
number of already developed cells in the neighborhood is recalculated and the site
attributes are updated at the end of each iteration. The number of iterations is
determined by the total land consumption in a given time period. The simulation will
stop when all the required number of cells have been converted into urban develop-
ment.

4 Implementation and simulation results

4.1 Simulation platform

In this dynamic ANN-CA model, neural networks play two rather separate roles—
calibration and simulation. The training or learning process was carried out outside the
CA model. Training the network is most important for successful applications of neural
networks. The connected strength (weight) between each pair of linked neurons, which
are used in the CA model, has to be estimated from the training process. This was carried
out by using a neural network package, ThinksPro,(V which contains sophisticated
algorithms and convenient interfaces for effective training and visualization.

After appropriate parameter values have been obtained, they are imported into the
CA model for urban simulation. The simulation is still based on neural networks. The
actual simulation model is implemented in a GIS platform by the integration of neural
network, CA, and GIS. GIS facilitate the convenient access to the spatial data which
are used as site attributes for the simulation. The model was programmed in ARC/
INFO® GRID using the Arc Macro Language (AML). The GIS package also provides
the buffering and overlay geoprocessing functions that are useful for CA simulation.

4.2 Remote sensing and GIS for obtaining site attributes

A real city, Dongguan, was selected to test the neural-network-based CA model. It
has a land area of 2465 km?2, situated in the Pearl River Delta in southern China
which has witnessed rapid urban expansion and land-use changes in recent years. The
simulation of urban development and land-use change is useful for urban and
regional planning. The model can be used to simulate future development for assess-
ing the environmental impacts of urban development if the current dynamics and
development pattern prevail in the future. Satellite images were used to provide basic
urban development information to train and test the model.

Land-use classification was carried out on the satellite TM images of 1988 and 1993.
The classification results were imported to ARC/INFO GRID in the grid format.
These grids were used as the empirical data for the calibration of the CA model.
Although the original TM images had a ground resolution of 30 x 30 m, the cell size
was resampled to 50 x 50 m for faster simulation. Binary values were used to represent
developed and nondeveloped areas in 1988 and 1993. A value of 1 represents developed
(converted) cells and 0 represents nondeveloped. The urban areas of 1988 were used as
the starting point of the simulation (figure 2, see over). The urban areas of 1993
(figure 3) were also obtained for testing the simulation by comparing the actual
development with the result of simulated development.

(M ThinksPro is a trademark of Logical Designs Consulting, Inc., La Jolla, CA.
@ARC/INFO is a trademark of Environmental Systems Research Institute, Inc., Redlands, CA.
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Figure 2. Initial urban areas of 1988 for simulation classified from satellite TM image.

Studies show that some distance-based variables are closely related to urban
development in the region and can be used for CA simulation (Li and Yeh, 2000;
Wu and Webster, 1998; Yeh and Li, 2001a). Satellite images can also indicate that
development sites are usually located along major transportation lines or around an
existing urban area. In this study, seven spatial variables were defined to represent
the site attributes of each cell for the simulation of urban development:

(1) distance to the major (city proper) urban areas S, ;

(2) distances to suburban (town) areas S,;

(3) distance to the closest road S;;

(4) distance to the closest expressway S, ;

(5) distance to the closest railways Ss;

(6) amount of development in the neighborhood (a window of 7 x 7 cells) S;;
(7) agricultural suitability .S,.

The distance variables were calculated with the Eucdistance function of ARC/
INFO GRID. The simulation will be more precise when the distances are measured
from existing urban areas rather than from urban centers, because growing urban areas
will generate more infrastructure and additional centers to support further urban
growth. These distance variables were dynamically updated during the simulation.

Amount of development was measured using the neighborhood of 7 x 7 cells
adjacent to the central cell. The Focal function of ARC/INFO GRID was used for
the calculation. This variable was also dynamically updated during the simulation. The
initial amount of development (the number of developed cells) in the neighborhood was
calculated from the 1988 binary image.

A problem is how to determine the weights or parameter values for these variables
in CA simulation. Estimation becomes much more difficult when the number of spatial
variables increases. However, the weights can be calculated automatically when a
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Figure 3. Actual urban areas of 1993 classified from satellite TM image that is used to verify the
result of the ANN-CA simulation.

neural network is used. No specific attention should be paid to which variable should
be selected in a neural network. The principle is to use all the spatial variables that are
identified as related to urban development. A neural network can deal with correlated
or redundant variables by itself.

4.3 Network structure

An essential task is to design the network structure for the CA simulation. The design
of the network structure is quite relaxed because the numbers of layers and neurons in
the layers can be rather subjectively determined. However, an increase in the numbers
of layers and neurons will drastically increase the computation time for the loop-based
CA model. The principle is to use as few layers and neurons as possible without
severely compromising model accuracy.

Kolmogorov’s theorem indicates that any continuous function ¢: X" — R can be
implemented by a three-layer neural network which has » neurons in the input layer,
(2n + 1) neurons in the single hidden layer, and ¢ nodes in the output layer (Hecht-
Nielsen, 1987; Wang, 1994). De Villiers and Barnard (1992) also suggest that a neural
network with one hidden layer may be preferable to one with two hidden layers in
terms of learning speed and performance. Practically, (2n + 1) neurons in the single
hidden layer may seem to be too much for actual applications. Experiments also
indicate that a network of (2n/3) neurons in the hidden layer can generate results of
almost the same accuracy but requiring much less time to train than that of (2n+ 1)
neurons (Wang, 1994).

Therefore, it is appropriate to use three layers of neural network for the CA
simulation. The input layer has seven neurons corresponding to the seven site attributes
chosen for the study. The hidden layer also has seven neurons. The output layer has
only one neuron to output the development probability. There are (7 x 7 =) 49 weights



1454 X Li, A Gar-On Yeh

to be determined for the links between the input layer and the hidden layer, and 7
weights between the hidden layer and output layer. A total of 56 parameters were used
for the neural-network-based CA model. The values of these parameters were auto-
matically determined by the learning process which is based on the back-propagation
algorithm using the ThinksPro package.

4.4 Calibration (training)

GIS overlay analysis was carried out in ARC/INFO GRID to obtain the training data
set. Land development in 1988 —93 was overlaid with the seven layers of site attributes.
The overlay provides the training data that can reveal the relationship between site
attributes and development probability. However, the relationship is rather complicated
because of the nonlinear development of urban systems. Neural networks are most
suitable to predict the development probability based on site attributes for nonlinear
systems.

It is inappropriate to use the whole data set for training. A sampling procedure was
carried out by using a stratified sampling method (Congalton, 1991), which ensures
that sampling effort can be distributed in a rational pattern so that a specific number of
observations are assigned to each category to be evaluated. Figure 4 shows examples
of the random stratified sampling points which were generated by the ERDAS
IMAGINE® package. Their coordinates were then imported to ARC/INFO GRID
for the retrieval of the site attributes that were associated with these sampling points
using the Sample function. There were 600 random sampling points, which were used
to train the neural network.

The training process was accomplished by the dynamic adjustment of the network
interconnection strengths (weights) so that the error between the desired and calculated
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Figure 4. Random stratified sampling points for obtaining training data set.

) ERDAS IMAGINE is a trademark of ERDAS, Inc., Atlanta, GA.
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can be minimized. The whole set of sampling points was divided into two equal groups
for the learning process of neural networks. One group is the training data set whereas
another group is the test data set. The training data set was used to obtain the weights
for each link between a pair of neurons. The test data set was further used to verify the
learning results. Table 1 shows examples of the training data set and the calculated
development probability from the ThinksPro package. A set of weights was finally
obtained from the training procedure.

One of the most important characteristics of trained neural networks is their ability
to generalize from the training data. If the network simply memorizes or overfits the
training data, it will generally perform poorly on the test data. ThinksPro can graphi-
cally show when a network is overtraining by the use of the ‘test while training’ option.
The test data set provides the means of validating the network performance. The use of
weight-minimization and network-growing methods available in ThinksPro greatly
increases the ability of the network to generalize. It is important to decide the number
of iterations so that the training can be stopped properly. If training process too long,
the network may be overtrained and cause large prediction errors for the rest of the
data. This problem was solved by stopping the training when the error for the test data
began to increase.

4.5 Simulation
The simulation was based totally on neural networks. At each iteration, the develop-
ment probability of each cell was obtained from the neural network. Cells with a

Table 1. Examples of site attributes, desired values (actual), and calculated development proba-
bility from artificial neural networks (ANN).

Site attributes Desired Output value from
value?® ANN (development

S S, S; S, Ss Se S; probability)
201 10 0 18 256 14 0.4 0 0.079

82 8 1 38 152 21 0.2 1 0.815

82 38 3 8 169 19 0.6 1 0.606

173 5 1 172 64 31 0.6 0 0.135

170 2 0 199 33 20 0.6 0 0.069

169 1 1 199 33 21 0.6 0 0.074

99 25 16 38 190 14 0.2 1 0.512

166 3 2 196 31 10 0.2 0 0.082

139 3 1 33 222 26 0.4 0 0.455

105 20 0 14 192 26 0.6 1 0.608

169 3 1 209 323 0.6 0 0.089

9% 24 3 23 169 20 0.2 1 0.746

94 30 1 9 180 17 0.6 1 0.493

91 8 3 147 2 21 0.2 1 0.693

154 27 1 38 231 4 0.6 0 0.049

140 19 1 29 227 26 0.6 0 0.304

69 3 1 10 161 19 0.2 1 0.864

69 34 0 117 40 20 0.6 1 0.560

2 0 means not developed; 1 means developed.

development probability greater than a predefined value were converted into developed
cells. It is straightforward to set the predefined value at 0.5 according to the training
results (table 1). However, CA simulation usually involves many iterations to decide
whether a cell is converted or not. It is better to raise the threshold value so that urban
growth is fulfilled step-by-step. A value of 0.5 is too low because too many cells are
converted at each iteration. Experiments indicate that a predefined value of 0.75 can
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produce better simulation results but that higher values can significantly increase
simulation time. At the end of each iteration, the amount of development in the
neighborhood was then recalculated to update the site attributes.

The first step was to simulate the urban development in 1988 —93 using the proposed
neural-network-based model. This can be compared with the actual urban development
that is detected from remote sensing. The initial urban areas for the simulation were
from the 1988 classified TM image. The simulation time was automatically determined
to ensure that the amount of land conversion was finally equal to that of the actual
development in 1988 —93. A disturbance term can be used in CA simulation to represent
stochastic perturbation (White and Engelen, 1993). Like other statistical models, the
network cannot capture stochastic perturbation by training. There is no model that can
produce the exact development pattern because of the uncertainties and complexities of
the real world. However, different values of parameter o can be used to explore possible
urban forms that are related to uncertainties. Higher values of parameter « can lead to
the urban areas becoming more chaotic or dispersed in the simulation. It is found
that the simulation can produce a pattern similar to the actual development in 1988 —93
using a higher value of disturbance (z = 3) [figure 5(a)]. The actual development is
quite dispersed. As an alternative, a more compact pattern can be simulated using a
lower value of the dispersion factor (z = 1) [figure 5(b)]. This indicates that the actual
land development in the region is influenced by some unexplained variables. It is also
confirmed by other studies that the region is characterized by a chaotic development
pattern because of severe land speculation (Yeh and Li, 2001b).

The second step was to predict possible future urban development in 1993 -2003
for planning purposes. The initial urban areas were from the classified 1993 TM image.
The prediction of future urban development assumed that the same growth trend will
continue. The amount of land consumption for the simulation was calculated on the
assumption that the average annual growth rate of the urban areas in 1993 — 2003 was
the same as that in 1988 -93. The same set of parameter values was used to predict
future urban development. Figure 6(a) (over) is the projection of the future urban areas
of Dongguan in 2003 using the same set of parameter values as those for the simu-
lation of the similar pattern of 1988 -93 (¢« = 3). It was found that the urban areas are
quite dispersed. There is a need to promote more compact development. Figure 6(b)
(over) is the result of using a smaller value for the dispersion factor (¢ = 1).

The model provides a tool directly linking training to the simulation of realistic
urban development. It is also possible to simulate future development and generate
alternative patterns for planning purposes. The model is much more convenient than
other CA models because users do not need to define most of the parameter values
for simulation. The simulation can provide useful information and implications for
land-use planning and management.

One problem with this prediction is that the changes in infrastructure such
as transportation networks have not been considered because of uncertainty. For
example, it is not easy to forecast where a new road will be built. The changes in
transportation layout can significantly influence development patterns. There is a need
to accommodate these changes although there are difficulties. The problem also occurs
in other CA models. One possible solution is to consider these changes as exogenous
factors that can be imported into the model from outside rather than simulating
them inside. For simplicity this model does not consider these exogenous factors at
this stage. Further studies are needed to develop a planning model based on neural
networks which can deal with a variety of uncertainties and exogenous factors.

The study demonstrates that the neural-network-based CA model is not difficult to
implement. The algorithm may be slightly more complicated than a traditional CA
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(b)

Figure 5. Simulation of urban areas of 1993 using the ANN-CA model based on the initial stage
of 1988: (a) dispersion factor = 3; (b) dispersion factor o = 1.
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(b)

Figure 6. Simulation of urban areas of 2003 (future) using the ANN-CA model based on the
initial stage of 1993: (a) dispersion factor « = 3; (b) dispersion factor o = 1.
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model because it uses a three-layer network. The experiment shows that total
simulation time is not substantially longer than that of traditional CA models.
The simulation time is about 5— 10 minutes longer than that of a previous model using
the same data set (Li and Yeh, 2000). However, the neural-network-based CA model
can save much time in calibration which may need a high-end workstation running
hundreds of hours for the blind trial (Clarke and Gaydos, 1998). In this model, only
about 2-3 minutes are needed to obtain the parameter values from the calibration
procedure of a neural network package. Neural networks are more robust for obtaining
weights than traditional MCE methods because neural networks are strictly based on a
back-propagation training procedure.

The experiment also indicates that the neural-network-based CA model is better at
simulating complex nonlinear systems. Wu (1998) suggests that a logistic regression
model could be used to estimate development probability for the integrated MCE and
CA simulation. The same sampling data set was used to compare the accuracies of the
two methods. Table 2(a) is the error matrix for the prediction of actual urban develop-
ment in 1993 using the neural network method from the training data. The overall
accuracy is 0.79. Table 2(b) is the error matrix for the prediction based on the logistic
regression model. The overall accuracy is 0.73. Moreover, the logistic regression model
may have multicollinearity problems when the variables are highly correlated. The
logistic model also has great difficulties in handling nonlinear functions.

Another important feature of the ANN-CA model is that the transition rules of
CA simulation are represented by the neural network. This means that users do not
need to design transition rules. In traditional CA models, users may face great diffi-
culties in choosing transition rules, so a variety of transition rules have been proposed
from different CA models. The model proposed here does not require explicit modeling
methods and strict data sources. The main task is to provide training data so that the
neural network can learn and generalize from them. Therefore, neural-network-based
CA models are very suitable for the simulation of complex urban systems.

Table 2. Prediction accuracy of urban development in 1988 —93 from (a) the ANN-CA model; (b)
the logistic regression model.

Observed Predicted Percentage correct

nonconverted converted

(a) ANN-CA model

Nonconverted 99 30 0.77
Converted 24 102 0.81
Overall percentage 0.79
(b) Logistic regression model

Nonconverted 134 22 0.86
Converted 48 60 0.56
Overall percentage 0.73

5 Conclusion

This study has developed a new type of CA model to simulate urban development
using artificial neural networks. General CA models have problems in obtaining
consistent parameter values when there are many variables in the simulation. It is
very time consuming to define parameter values for promoting the ‘best-fits’. This
paper has demonstrated that neural networks can be conveniently used to solve the
problems of calibration. In the proposed method, most of the parameter values



1460 X Li, A Gar-On Yeh

required for CA simulation are automatically determined by the training procedures
rather than by the users.

The algorithm is quite simple and the simulation time is not very long. The
proposed method can significantly reduce the time needed for calibration. The tradi-
tional methods may need to run a calibration model repetitively for hundreds of hours
by using different combinations of parameters before finding a suitable set of values.
The total time for calibration and simulation can be substantially reduced by the
proposed model.

Moreover, the transition rules of CA simulation are represented by a neural net-
work. This means that users can overcome the problem of providing detailed transition
rules that are often difficult to define. The users are required only to provide training
data for the simulation. The proposed model can significantly reduce the requirements
for explicit knowledge in identifying relevant criteria, assigning scores, and determin-
ing criteria preference. Variables used in spatial decisions are very often dependent on
each other. General MCE methods are not suitable for handling highly correlated
variables. Neural networks can learn and generalize correctly and handle redundant,
inaccurate, or noisy data which are frequently found in land-use information. Users
do not need to worry about which variables should be selected. Knowledge and
experiences can be easily learnt by the model and stored for further simulation.

This model can be further extended to simulate competing land-use conversion
between multiple land uses. A network with multiple output neurons can be devised
to represent various conversion probabilities. Land-use conversion involving multiple
land uses is much more complex and a much larger set of spatial variables and param-
eters would be required for the simulation. It is very difficult to determine parameter
values and define model structures for conventional CA methods. Further study is
needed to examine the issues related to the simulation of multiple land uses by means
of neural networks.

The simulation of future development based on past growth may have some
problems because of uncertainty. Like many other computer models, it is difficult to
determine exogenous factors or interventions and quantify them for the simulation.
However, the proposed model is not limited to the simulation which best fits the
historical trend. It is able to simulate alternative development by training the network
properly. For example, the training data set can be evaluated to identify the ‘good’ or
‘bad’ performance of developed cells according to some criteria. New training data sets
can be formed to train the network to accommodate interventions in the change
process. Further studies can be carried out to simulate planned development instead
of ‘actual’ development.

Neural networks have some other inherent shortcomings. The optimal structure for
the numbers of layers and neurons is still unclear for a specific application. The
principle is to use a structure that is as simple as possible. The effects of a structure
need to be validated by experiments. More studies may be needed to study the
influences of the number of layers and neurons on the simulation results. Furthermore,
one should be cautious about the ‘overfitting’ problem—the network fits well for the
training samples but performs poorly for unseen data. The way to avoid the problem is
to use the fewest hidden neurons (Zhou and Civco, 1996) and limited iterations
for learning (Openshaw and Openshaw, 1997). This can guarantee that most of the
generalization features can be conserved.
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