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Urban  land  use  spatial  allocation  is crucial  to lots  of  countries  that  are  usually  under  severe environmental
and  demographic  pressures,  because  it can  be used  to alleviate  some  land  use  problems.  A number  of
models  have  been  proposed  for the optimal  allocation  of  land  use.  However,  most  of  these  models  only
address  the  suitability  of  individual  land  use  types  and  spatial  competition  between  different  land  uses  at
micro-scales,  but  ignore  macro-level  socio-economic  variables  and  driving  forces.  This  article  proposes  a
novel  model  (SDHPSO-LA)  that  integrates  system  dynamics  (SD)  and  hybrid  particle  swarm  optimization
(HPSO)  for  solving  land  use allocation  problems  in  a large  area. The  SD  module  is  used  to  project  land
ybrid particle swarm optimization use  demands  influenced  by  economy,  technology,  population,  policy,  and  their  interactions  at  macro-
scales.  Furthermore,  particle  swarm  optimization  (PSO)  is modified  by  incorporating  genetic  operators
to allocate  land  use in  discrete  geographic  space.  The  SDHPSO-LA  model  was  then applied  to  a  case  study
in  Panyu,  Guangdong,  China.  The  experiments  demonstrated  the  proposed  model  had  the  ability  to  reflect
the complex  behavior  of  land  use  system  at different  scales,  and  can  be  used  to  generate  alternative  land
use  patterns  based  on  various  scenarios.

Crown Copyright ©  2013 Published by Elsevier B.V. All rights reserved.
. Introduction

Urbanization in China has been accelerating with the rapidly
rowing economies and massive immigration to cities since the
doption of economic reform and open-door policy in 1978. Urban
reas expanded by almost 100% from 1996 to 2005 (National Bureau
f Statistics). The rapid urbanization process has involved the con-
ersion of natural ecosystems, farmland, water, and vegetation into
rban areas. However, the lack of appropriate land use planning
as given rise to a series of environmental problems, including the
ncroachment of agricultural land, destruction of sensitive ecosys-
ems, environment pollution, soil erosion, severe flooding, and
eduction of biodiversity (Seto et al., 2002; Li and Liu, 2008; Liu et al.,
011). These problems have negatively affected sustainable land
evelopment. The spatially optimal allocation of land resources is
rucial in these regions that are usually under severe environmental
trains because it can be used to alleviate some land use problems
n rapidly growing cites (Li and Liu, 2008).
Land resource allocation is a spatial optimization problem,
here the planner tries to reconcile multiple conflicting interests

s rationally and transparently as possible by manipulating the

∗ Corresponding author. Tel.: +86 15802012393.
E-mail address: yiernanh@163.com (X. Liu).

304-3800/$ – see front matter. Crown Copyright ©  2013 Published by Elsevier B.V. All ri
ttp://dx.doi.org/10.1016/j.ecolmodel.2013.02.027
proportions and locations of land uses (Carsjens and Van Der
Knaap, 2002). There are some conflicts in land use decision making
because the involvement of people has interests in the same
land parcels for incompatible land uses (Bojórquez-Tapia et al.,
1994; Li and Liu, 2008). These conflicts greatly complicate land
resource allocation. Furthermore, the planner must also take into
account both site (e.g. suitability, cost, environmental impacts) and
aggregation (e.g. shape, contiguity, compactness) attributes (Cova
and Church, 2000). The complexities of searching for a solution
considerably increase if a region is very large and a fine spatial
resolution of data is used (Stewart et al., 2004). As a result, there
is an urgent need for an effective tool that can assist planners in
determining the optimal allocation of land use.

To date, a number of approaches have been developed for the
computation of the optimal allocation of land use (Wright et al.,
1983; Williams and Revelle, 1998; Stewart et al., 2004). Linear
programming (LP) may be the earliest among such methods. Cocks
and Baird (1989) applied LP to address multiple reserve selection
problems in South Australia. The LP method can ensure optimal
solutions, but finding a solution within a reasonable amount of
time is difficult. Eastman et al. (1995) proposed the iterative relax-

ation (RI) method to solve land use allocation problems involving
conflicting objectives. The limitation of RI is its lack of a compact-
ness constraint (Chen et al., 2010). Recently, many researchers
resorted to heuristic algorithms, which are more efficient for

ghts reserved.
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olving complex spatial optimization problems (Xiao et al., 2007).
or instance, Brookes (2001) developed a site allocation method
y integrating region growing techniques and genetic algorithm
GA). Xiao et al. (2002) used GA and GIS to generate alternatives for

ulti-objective site search problems. Matthews (2001) explored
he potential of GA in assisting the planner in generating land use

apping to achieve multiple objectives. Another heuristic method
idely used to solve spatial allocation problems is called simulated

nnealing (SA). Bos (1993) used SA to create forest management
ones. Martínez-Falero et al. (1998) presented SA algorithms for
llocating agricultural activities. Another example of the use of SA
n generating land use spatial allocation alternatives is provided
y Aerts and Heuvelink (2002),  their model both minimizes devel-
pment costs and maximizes spatial compactness of land use.
anté-Riveira et al. (2008) extended SA algorithms with varying
emperature to solve multiple land use optimization problem.

Despite successful examples in solving spatial allocation prob-
ems, most of these studies mainly focus on allocating land resource
or a small region. For example, in the experiment of Xiao et al.
2002), each solution only has ten cells. Verdiell et al. (2005) applied
he SA method to select and design a National Park, but the study
egion has an area of only 900 cells. Solving spatial optimization
roblems with increased study area size is a challenge. Thus, the
xploration of an efficient optimization approach for land use allo-
ation in large areas may  result in useful practical applications.

A more severe problem with land resource spatial allocation is
hat these models only address the suitability of individual land use
ypes and spatial competition between different land uses at micro-
cales. There is a lack of macro-scale socio-economic variables, such
s regional economic inequality, population migration and policy
nfluences. Land use change is in fact determined by the interaction
n space and time of socio-economic and physical components at
ifferent scales (He et al., 2005). As a top-down approach, system
ynamics (SD) blends the art of traditional management with the
cience of feedback control. It is particularly suited to the investiga-
ion of socioeconomic driving forces and the simulation of complex
ystems (Han et al., 2009). SD can describe the complicated connec-
ions among each element and predict changes in complex systems
hange under different “what if” scenarios. In recent years, SD has
een used successfully to solve geographical problems, including
nvironmental management (Mashayekhi, 1990), water resource
lanning (Ford, 1996), regional environmental management (Guo
t al., 2001), land use analysis (Liu et al., 2007) and urban devel-
pment (Han et al., 2009). However, it has disadvantages when
ealing with a mass of spatial data, and cannot incorporate spatial
actors into the system. Therefore, considering the advantages and
isadvantages of SD and land use allocation approaches, the inte-
ration of land use spatial allocation models with system dynamics
odels is urgently needed.
This research proposes a novel approach based on the inte-

ration use of system dynamics and hybrid particle swarm
ptimization (HPSO) for solving land use allocation problem in

 large area. Particle swarm optimization (PSO), which simulates
he social behavior of bird flocks, is a population-based stochas-
ic optimization algorithm for finding optimal regions of complex
earch spaces through the interaction of particles. Successful appli-
ations of PSO to various problems, such as function optimization,
attern recognition, and data mining, have demonstrated its poten-
ial. Many studies have demonstrated that PSO is highly robust and
an offer different routes through the problem hyperspace than
ther evolution algorithms (Boeringer and Werner, 2004). How-
ver, very few studies of PSO focused on discrete combinatorial

ptimization because the original PSO is customized to continu-
us function value optimization (Yin, 2006). Land use allocation
elongs to a typical discrete combinatorial optimization problem,
hich cannot be solved by the original PSO directly. Hence, this
lling 257 (2013) 11– 24

article proposed a hybrid strategy embedding discrete crossover
and mutation operator into the PSO algorithm to tackle spatial
combinatorial optimization problems.

The contribution of this article is twofold. First, we present an
integrated system dynamics (SD) and hybrid particle swarm opti-
mization (HPSO) model for land use allocation. Through the SD
module, macro-level socio-economic variables and driving forces
are taken into account. Then, the HPSO module is used to gener-
ate optimal land use patterns based on suitability map and spatial
constrains. Second, the original PSO is customized to continuous
function value optimization. In this article, PSO is modified by incor-
porating discrete genetic operators to be suitable for solving spatial
combinatorial optimization problems.

The remainder of this article is organized as follows. Section 2
reviews basic PSO. Section 3 describes land use allocation prob-
lem formulation. Section 4 provides the details of the proposed
SDHPSO-LA model. In Section 5, we  present the experimental
results and discussion. Finally, a conclusion is given in Section 6.

2. Basic PSO algorithm

Particle swarm optimization (PSO) is a population-based opti-
mization technique proposed by Kennedy and Eberhart in 1995. It
is based on a metaphor of social interaction such as bird flocking
and fish schooling. In PSO, a candidate solution for a specific prob-
lem is called a particle. Each particle moves through the problem
space with a velocity, which is dynamically adjusted by its own
moving experience and those of its companions. Similar to GA, PSO
also has a fitness function that evaluates the position of the particle.
The best position found by each particle is called the personal best
(pid), and the best position with the highest fitness value among
all the particles obtained is called the global best (pgd). The PSO
algorithm completes the optimization process through following
the personal best (pid) and the global best (pgd). At each time step,
all particles are updated by the following equations (Kennedy and
Eberhart, 1995):

Vid(t + 1) = ω · Vid(t) + c1 · r1 · (pid − Xid(t)) + c2 · r2 · (pgd − Xid(t))

(1)

Xid(t + 1) = Xid(t) + Vid(t + 1) (2)

where t is the number of iterations; i is the particle number, d is the
component number which represents the dimension of particles;
Vid and Xid are positions and velocities of particles respectively, ω
is called inertia weight, which is employed to control the influ-
ence of the previous history of velocities on the current velocity;
c1 and c2 are two positive constants, called cognitive learning rate
and social learning rate respectively; r1 and r2 are uniformly dis-
tributed random numbers between 0 and 1. pid is the local best
solution found by the ith particle, where pgd represents the global
best. The PSO algorithm is terminated once the best position of all
the particles cannot be improved further after a sufficiently large
number of generations.

3. Land use allocation problem formulation

If we suppose that the study area is to be allocated into K dif-
ferent land use types, and the observed region is denoted as a
two-dimensional grid of cells arranged into R rows and C columns,
then the land use allocation problem is how to assign a specific

land use to each individual cell (i, j), so that the resulting land use
map  optimally achieves the planning objectives. Generally, there
are several important planning objectives for land use allocation
(Stewart et al., 2004; Siitonen et al., 2003), such as selecting a given
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rea of land, maximizing land use suitability, and achieving the best
patial objectives (compactness or compatibility). In our research,
hese planning objectives are expressed by the following equations
Stewart et al., 2004; Liu et al., 2012):

ax

K∑
k=1

R∑
i=1

C∑
j=1

Suitijkxijk (3)

in

R∑
i=1

C∑
j=1

distij · xijud (4)

ax

K∑
k=1

R∑
i=1

C∑
j=1

cdomijk
· xijk (5)

ax

K∑
k=1

Compk (6)

ompk = LkMaxSum − LkSum

LkMaxSum − LkMinSum
(7)

K

k=1

xijk = 1 ∀i = 1, . . . , R, j = 1 . . . , C xijk ∈ {0, 1} (8)

R

i=1

C∑
j=1

xijk = Qk ∀k = 1, . . . , K (9)

here Suitijk is the suitability of the kth land use, xijk equals 1 if land
se k is allocated to cell (i, j), and equals 0 otherwise. distij is the
istance of cell (i, j) to its nearest developed area. xijud = 1, if unde-
eloped land at location (i, j) is converted into developed land; and
ijud = 0 otherwise. domij is the dominant land use type within the
eighborhood of cell (i, j). cdomijk

is the compatibility index between
and use domij and k. Compk is the compactness of the kth land use.
kSum is the sum of perimeter of land use k. Once the area is known,
he most compact form is circular and the minimum sum of perime-
er of land use k (LkMinSum) can then be calculated. On the contrary,
f the selected sites are separate from each other, the maximum
um of perimeter of land use k (LkMaxSum) can be obtained. Qk is

 pre-specified percentage of land use k in the entire area. Eq. (3)
aximizes the total suitability of land use map, i.e., it is considered

ptimal that each land use is allocated to the most suitable land. Eq.
4) minimizes the distance of new development to already devel-
ped sites. Eq. (5) maximizes the compatibilities between land use
f cell (i, j) and its neighborhood. Eqs. (6) and (7) maximize the spa-
ial compactness of a land use. The compact pattern of land use can
mprove efficiencies in land source and energy utilizations because
ess infrastructures and other services are needed (Gabriel et al.,
006). Eq. (8) ensures that only one land use can be allocated to
ach cell. Eq. (9) specifies the percentages of different land use types
or the allocation to meet. Land allocation problems are often com-
lex because conflicting objectives are involved. Generally, a simple
dditive weighting method is employed to create a composite score
o solve a multi-objective problem:

 =
K∑

k=1

(a · Suitk + b · cdomk + c · Compk − d · dist)

× ∀a + b + c + d = 1 (10)
here U is a composite score incorporating all objectives; and a, b,
 and d are the weights of suitability, compatibility, compactness,
nd distance to developed land, respectively.
lling 257 (2013) 11– 24 13

4. Integrating SD with HPSO for land use allocation
(SDHPSO-LA)

The SDHPSO-LA model consists of two components, system
dynamics (SD) and hybrid particle swarm optimization (HPSO), for
allocating land use. The SD module is used to project the land use
scenario demands influenced by population, economy, technology
and policy at the national or regional scale. The HPSO algorithm is
the land use allocation module, which allocates the regional level
demands to individual grid cells with the consideration of land use
suitability and spatial objectives (compactness or compatibility)
using HPSO. The general structure of SDHPSO-LA model is shown
as Fig. 1.

4.1. The system dynamics module for projecting land use
demands

The SD methodology is a simulation technique that models
large-scale, complex socio-economic systems using stocks and
flows, and by explicitly including feedback loops (Sterman, 2000).
It attempts to understand how the physical processes, information
flows, and managerial policies interact to create the dynamics of
the variables of interest (Vlachos et al., 2007). Many researchers
have noted that SD was particularly suited to model land use
systems (Forrester, 1969). It is because that land use systems
is a complex system, which is determined by the interaction of
different human factors.

In this article, the proposed SD model aims to simulate the land
use scenario demands. The SD model basically consists of three
sub-models, namely population, economy and land use. Population
sub-models are essential because they can influence other sectors.
This sub-model, mainly referred to the quantity of population, is
comprised of usual and mobile population. The annual increase
in total population is attributed to the natural increasing people
and immigrants. Economy sub-model, reflecting the economic
development, also has a strong correlation with population and
land use. In this sub-model, GDP (gross domestic product) act as
a critical indicator that directly affects the change in the value of
employment posts and industry investments. Land use sub-model
is assumed to be composed of three parts: residential, industrial,
and commercial land. Residential land is estimated by multiplying
urban population with urban residential land per capita, while
the commercial land and industrial land are mainly estimated
by the change with the GDP of service industries and the GDP  of
industries respectively. Relevant formulas for estimating urban
land demands are listed as follows:

RL(t)  = 95 + 0.004 · (TP(t) · ALPP · 10−6)
2.35

(11)

IL(t) = 38.1 + 0.147 · IOV(t) · LMIO(t) (12)

CL(t) = 25 + 0.23 · ln(ACLP(t) × 10−3) · ln(TII(t) × 10−1)

·ln(TP(t) × 10−5) (13)

LMIO(t) = 0.025 · exp

(
1

1.1 · TI + 1.8 · SII(t) × 10−5

)
(14)

ACLP(t) = 0.5 · GDP(t)
TP(t)

(15)

where RL(t), IL(t) and CL(t) are the area of residential, industrial and
commercial land at time t, respectively. TP(t), which is derived from

the population sub-model, represents the total population at time
t. GDP(t) represents the gross domestic product at time t. ALPP is
the average living space per capita. IOV(t) represents the industrial
output value at time t. LMIO(t) means the coefficient of land area
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Fig. 1. The general structure of the SDHP

rom million in industrial output at time t, which is estimated
ased on the technical inputs (TI) and the second industrial invest-
ent (SII). ACLP(t) represents the average consumption level per

apita at time t, which is defined as a half of GDP per capita. TII(t)
epresents the tertiary industry investment at time t. The values of
OV, SII,  TII are mainly obtained from GDP in economy sub-model.

The SD model was constructed by using the software of Vensim,
hich is designed using a visualization process that allows model

uilders to conceptualize, document, simulate, and analyze models
f dynamic systems (Forrester, 1961). The structure of the SD model
s shown in Fig. 2. Land use demand is driven by different “what-if”
cenarios controlled by different socio-economic factors at regional
cales.

.2. The HPSO algorithm for the spatial allocation of land use

PSO is an efficient and effective global optimization algorithm
idely applied to nonlinear function optimization (Eberhart and

hi, 2001; Cagnina et al., 2004). The original PSO is customized
o continuous function value optimization (Kennedy and Eberhart,
997). However, the spatial allocation of land use is a discrete com-
inatorial optimization problem (Ligmann-Zielinska et al., 2008).
hus, this article further modified and extended the PSO algorithm
ith embedding genetic operator for solving land use allocation
roblems.

.2.1. Particle representation
Particles correspond to candidate solutions to the underlying

roblem. Hence, we use the particle to represent the solution of
and use allocation by a two-dimension integer array. In this article,
he array size is equal to the size of the study region (R × C). As
llustrated in Fig. 3, there are K types of cells, and the number of each

ype cells is equal to the corresponding number for each land use.
he code of the cell corresponds to its land use type. For example,
he codes for industrial, residential, and commercial are 1, 2, and
, respectively. At the start of optimization, these types of land use
 model for generating land use patterns.

cells are randomly positioned in the study region (R × C) for each
particle.

4.2.2. Hybrid strategy
In PSO, each particle flies to a better position, which is a ran-

domized weighted sum of vectors based on its personal and global
best positions (Eqs. (1) and (2)). This property is perhaps desired for
continuous optimization problems. However, it hinders the solu-
tion exploration for discrete combinatorial optimization (Yin, 2004;
Esmin et al., 2005). The meanings of concepts such as trajectory and
velocity are difficult to be represented in a discrete space. The solu-
tion to this dilemma is to express the discrete combinatorial prob-
lems in a binary notation and find an optimizer that can operate on
two-valued functions to improve the PSO for handling these prob-
lems (Kennedy and Eberhart, 1997). However, land use allocation
is an optimization problem that deals with multiple types of land
use in two-dimensional space, and is very difficult to be expressed
in a binary notation. Some studies indicated that the optimal solu-
tion may  be obtained by a recombination of the cells in the discrete
combinatorial space instead of a weighted sum of the vectors (Zhi
et al., 2004; Yin, 2006; Shi et al., 2007). Genetic algorithm (GA), as a
search heuristic that mimics the process of natural evolution, pro-
vides a mechanism for exchanging and recombining information
(such as land use cells) among good-quality individuals (Stewart
et al., 2004). Hence, to facilitate the applicability of PSO to land
use allocation problems, we propose a new particle adjustment
rule with genetic reproduction mechanisms, namely crossover and
mutation. The improved formula is described as follows:

Xid(t + 1) = Rand(Xid(t)) +  ̨ · Cross(Pid(t), Xid(t))

+  ̌ · Cross(Pgd(t), Xid(t)) (16)

where Xid is the positions of particle i; Pid is the local best solution

found by the ith particle, while Pgd represents the global best; ˛
and  ̌ are two  random integers. Cross( ) is the strategy of cross
operation corresponding to a crossover among Xi, Pi, and Pg such
that the particle can exchange land use cells with personal and
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Fig. 2. The framework of land use sce

lobal best experiences. As illustrated in Fig. 4, a cross operation
etween particles Xi and Pi has been explained in detail. First, we
andomly choose an area D in particles Xi and Pi, respectively.
ach area has the same size (the value is equal to ˛) and position
n particle space. All the cell types of the selected area then in

article Xi are transformed into the same cell type of the selected
rea in particle Pi. Finally, considering the consistency of land use,
article Xi need to modify and make sure the cell numbers of each

and use type unchanged as same as before. For example, after

ig. 3. The representation of each particle corresponding to the solution of land use
llocation.
demands based on system dynamics.

the transformation process in particle Xi, two cells where the land
use is type-3 are increased, whereas the one cell where the land
uses are type-1 and type-2 are decreased. To avoid this mistake,
two cells where the land use is type-3 in particle Xi are randomly
picked out and assigned as type-1 and type-2, respectively.

Rand( ) is the strategy of mutation operation corresponding to
the mutation performed in GAs. In the strategy, we randomly select
two cells with different land uses in particle Xi, and exchange the
type for each other by allocating the land use (Fig. 5).

Accordingly, Eq. (16), as a new particle adjustment rule, is ana-
lyzed in terms of two  important aspects. First, cross operations were
performed on particle Xi, local best solution Pi and global best solu-
tion Pg. These operations facilitate the particle exchange of land
use cells with local and global best solutions, such that particle Xi
can update itself by obtaining local and global information. Sec-
ond, particle Xi was  adjusted by mutation operation to maintain
the particle diversity. Each particle can learn from individual and
global best experiences to update and improve itself by the cross
and mutation operations. These steps overcome the limitation of
the original PSO in the discrete combinatorial space by the new par-
ticle adjustment rule with the genetic recombination mechanism.
Hence, the proposed algorithm named HPSO is more suitable than
the original algorithm for solving land use allocation problems.

4.2.3. The procedures of HPSO
For solving land use allocation problems, the detailed proce-

dures of the proposed HPSO are presented as follows:
Step 1: Initialization.  A swarm of particles are initially created
with size n, each of which is a two-dimensional integer array cor-
responding to a candidate solution to the underlying problem. Set
t = 0.
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Fig. 4. The strategy of cross o

Step 2: Evaluation. The fitness values of all particles are evaluated
using Eq. (10).
Step 3: Determine the best position. The fitness evaluation of the
particle is compared with its best fitness value pbest. If the current
value is better than pbest, then the pbest value is set to be equal
to the current value, and the particle individual best position Pi
equals the current position. Similarly, the best position Pg of the
swarm visited so far is determined by the whole swarm.
Step 4: Update of particles. Each particle position is updated using
Eq. (16). However, not all new particles produced are improved by
the update mechanism. To accelerate the convergence speed and
make particles more efficient in exploring the solution space, we
take an improved measure as follows: for each particle Xi, if the
fitness value of the position of the new particle is better than that
of the individual best position Pi of the particle, particle Xi accepts
the new position.
Step 5: Termination. Set t = t + 1. If t < tmax, Step 2 follows; other-

wise, the procedure is terminated.

Finally, the best particle Pg of the swarm is an optimal solution to
he land use allocation problems when the procedure is terminated.

Fig. 5. The strategy of mutation opera
on for the SDHPSO-LA model.

5. Implementation and results

The SDHPSO-LA model was applied to solve land use allo-
cation problem of Panyu, a city in South China. The modeling
contains three general steps: (1) data processing and mapping,
which respectively generates the suitability and the spatial dis-
tance of each urban land use, as well as the compatibility of adjacent
land uses; (2) projecting land use demands under different scenar-
ios using the SD module, which generates proportions of different
land uses that need to be met by the allocation; and (3) allocating
land uses to cells based on the planning objectives using the HPSO
algorithm.

The proposed model was  implemented using the software of
Vensim and Visual C#. All experiments were run on a PC with
Intel(R) Core(TM) 2, 2.33 GHz CPU, 2.00 GB RAM, and Windows 7
OS.
5.1. The study area

Panyu city is selected to test the proposed model. The city, with
an area of 786 km2, is situated at the centre of the Pearl River

tion for the SDHPSO-LA model.
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oped areas, some proximity distance maps need to be used. The
distance maps were generated using ArcGIS 9.3 Spatial Analyst
Fig. 6. Location of Pan

elta (PRD) in Guangdong Province, one of the fastest developing
egions in China (Fig. 6). With the implementation of the Reform
nd Opening-Up Policy, the city has undergone rapid economic
evelopment and urban sprawl, thereby losing a large amount of
gricultural land due to rapid urban development and poor land
anagement (Yeh and Li, 1999), consequently, a series of land use

roblems has arisen. Therefore, sustainable land use patterns of
anyu city are very crucial for local environmental and economic
lanning. As a serviceable tool for land use management, the opti-
al  allocation of land use plays an important role in fully exploiting

he potential of land use, as well as keeping the land ecosystem bal-
nce (Bourne, 1969; Verburg et al., 1999; Andrew, 2002). Thus, we
pply the SDHPSO-LA model to identify optimal allocation for land
ses in Panyu city.

.2. Data processing and mapping

The study area consists of an analysis of 131,093 cells, with a
round resolution of 100 m.  We  generalize current land use in the
rea into five categories, namely, industry, commerce, residence,
ndeveloped (such as agriculture and orchards) and restricted land
such as water, ecological preservation zone) (see Fig. 7). Except
or restricted land use, which is about 132.91 km2 according to
ocal government regulations, only four land uses (industry, com-

erce, residence and undeveloped land) are convertible, whereas
he undeveloped land represents open-space areas that may  be
onverted into urban areas (industry, commerce, and residence).

Land use suitability analysis is the process of estimating the fit-
ess of a given tract of land for a specific use (Pereira and Duckstein,
993; Steiner et al., 2000; Jacek, 2004). In this study, the spatial suit-
bility of each type of land use was derived based on a weighted
verlay of 14 factors in Table 1 (Huang et al., 2012). Then, the asso-
iated weights of each factors were obtained through the analytic
ierarchy process (AHP), which is a decision-making theory of mea-
urement in a multi-criteria evaluation problem through pair-wise

omparisons that relies on the experiences of experts to derive pri-
rity scales (Thomas, 1990; Saaty, 2005). Thus, with the aid of the
HP method, the factors and their weights obtained for different

and uses are listed in Table 1. Then land use suitability (Fig. 8)
 the Pearl River Delta.

was created by integrating the above factors and weights using the
ArcGIS 9.3 spatial overlay analyst function.

As one of the planning objectives for land use allocation, the dis-
tance to already developed areas can embody the effect of urban
development attractiveness (Batty and Xie, 1994). To ensure that
future social economic activities occurred close to existing devel-
Fig. 7. Land use map input in the case study.
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Fig. 8. The suitability maps for industry, residence, and commerce respectively.

indust
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Fig. 9. The distance to developed areas of 

uclidean Distance function. The value ranges of these spatial vari-
bles are normalized into 0–1(Fig. 9).

The compatibility of land uses means the degree to which two

r more land use types co-exist (Libby and Sharp, 2003; Taleai
t al., 2007). There are different kinds of spatial externalities among
arious land use types (Hughes and Sirmans, 1992). However,
hese relationships of externalities can be positive or negative

able 1
eights of factors for each of the three land uses.

Factors Industry Residence Commerce

Slope 0.1253 0.1124 0.1266
Elevation 0.0867 0.0827 0.0935
Geological disaster potential 0.1427 0.1479 0.1461
Distance to towns 0.0675 0.1029 0.1251
Distance to highways 0.1669 0.0764 0.0528
Distance to roads 0.1553 0.0886 0.1035
Density of green surfaces 0.0286 0.0923 0.0297
Proximity to river 0.0254 0.0227 0.0169
Proximity to industry 0.1622 0.0119 0.0135
Proximity to commerce 0.0236 0.1054 0.1753
Proximity to residence 0.0108 0.1568 0.1170
Sum 1 1 1
ry, residence, and commerce respectively.

(Willis et al., 1998; Espey and Lopez, 2000). For instance, placing an
industrial land use adjacent to residential land uses causes some
negative externalities due to the pollution made by industrial activ-
ity. Therefore, the location and allocation of land to each land use
type should be designed to minimize undesirable impacts among
adjacent land uses. The purpose is to protect the health, safety,
and welfare of the community by reducing noise, air, and visual
pollution, as well as increase the usability and value of the lands by
maximizing positive externalities. In this study, the compatibility
of land uses was  acquired based on personal communication
with the experts and urban planners (Table 2). The compatibil-
ity value range is [0.0, 1.0], where higher values indicate more
compatibility.

5.3. Land use demands based on different scenarios

Before conducting the experiment for land use allocation opti-
mization, land use demands of Panyu city in the forecast period

need to be obtained. With the historical data of statistical yearbooks
and land resources investigation of Panyu city, we  investigated the
influence of economic development, population growth, technol-
ogy investment and policy changes on the demand for each land
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Table 2
The compatibility of land uses.

Land use Industrial Residential Commercial Undeveloped Restricted

Industrial 1 0 0.2 1 0.1
Residential 0 1 0.8 1 0.9
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Commercial 0.2 0.8 

Undeveloped 1 1 

Restricted 0.1 0.9 

se. Then, land use demands from 2008 to 2030 under different
cenarios can be created by using the SD module.

.3.1. Parameter selection
The modeling scenarios are constructed based on a series of

arameters that greatly influence the system. By adjusting these
arameters, land use demands under different scenarios can be
enerated from the SD module. As discussed in Section 4.1 above,
our parameters (GDP growth rate, population growth rate, tech-
ology investment proportion, and living space per capita) were
hosen as system control variables according to the development
onditions that mainly affect the current structure of land use in
anyu. Different values were assigned to parameters according to
he historical statistical data of Panyu to generate various develop-

ent scenarios for the city in 2030. The parameters setting for each
ystem dynamics model scenario is listed in Table 3.

Table 3 indicates that the size of the city increases as the
evel of economic development rises. Consequently, urban sprawl
ncreases the demand for commercial and industrial land. Mean-

hile, agricultural land requires reduction to accommodate urban
prawl. Thus, economic development has an important impact
n land use change. Three scenarios for Panyu’s economic devel-
pment in the next over 20 years are design as follows: (1)
ooming-oriented development, in which the GDP of Panyu is
xpected to grow rapidly at the rate of 18%; (2) steady develop-
ent, in which the GDP growth rate is maintained at the current

evel of 12%; and (3) conservative development, in which the GDP
rowth rate is set to 8%.

The population increase undoubtedly leads to higher demand
or residential areas and living space. Panyu city currently experi-
nces decline in both fertility and mortality, and population growth
ate dropped from 7.02‰ in 2000 to 5.67‰ in 2010. In this study, we
stablished three modes of population growth to simulate Panyu’s
opulation development situation in 2030: high-speed growth,
teady growth, and low-speed growth. The population growth rate
or each mode is listed in Table 3.

Technology development is a key factor that influences indus-

ry production. Increased investment in technology can improve
ndustrial productivity, relieving agricultural pressure from the
ncreasing demand of people living. In addition, increased invest-

ent can also improve urban land use efficiency and reduce

able 3
he scenarios parameter settings for system dynamics model.

Driving force Manipulated variable 

Economic GDP growth rate (%)

Population
Population growth rate
(‰)

Technology
Technology investment
proportion (%)

Land  policy
Living space per capita
(m2 per capita)
1 1 0.5
1 1 1
0.5 1 1

land resource consumption. We  established two technology devel-
opment scenarios for the next 20 years, based on the current
technology investment in Panyu. One scenario involves the
improvement of investment level and strengthening of technol-
ogy development; the other involves maintaining the original
investment level. The latter indicates that technology investment
proportion will remain at the current level of approximately 30%.

Land policy is generally implemented to regulate land use,
which is an important human factor that directly affects change
in urban land use. Living space per capita is mainly selected to rep-
resent the influence of land policy implementation in simplifying
the complex model. In this study, we also presented three scenar-
ios for Panyu land development over the next 20 years or so. In
the first scenario, land use in Panyu experiences a vigorous devel-
opment, in which the living space reaches 35 m2 per capita. In the
second scenario, moderate development with economic demand
and resource protection considered is presented. In the third sce-
nario, urban expansion is restricted to protect land resources, and
living space is limited to 25 m2 per capita.

5.3.2. Scenarios design
By the combination of different value of four parameters above:

GDP growth rate, population growth rate, technology investment
proportion, and living space per capita, the SD module was  used to
construct four modeling scenarios for the land use demands accord-
ing to the actual situation of socio-economic development and land
use in Panyu. These scenarios represent the future development of
Panyu at different local socio-economic and policy-making levels.
Table 4 summarizes the combination of the different values of the
four parameters in each given scenario.

5.3.2.1. Scenario 1: Baseline Development Scenario (BDS). BDS, for
predicting land use demands, is based on the trajectory of past
development of Panyu. In this scenario, the current trends of
economic and population development are assumed to continue.
According to the present circumstance of land use in Panyu, the
value of living space per capita is also held at the constant level of

30 m2 per capita.

5.3.2.2. Scenario 2: Fast Development Scenario (FDS). FDS is con-
structed to maximize of socio-economic benefits in Panyu. In this

Parameter value Remark

18 Booming development-oriented (E1)
12  Steadily development-oriented (E2)

8  Conservative development-oriented (E3)

7 High-speed growth (P1)
5  Steady growth (P2)
3 Low-speed growth (P3)

35 Improve input level (T1)
30 Maintain the original level (T2)

35 Vigorous development (L1)
30 Moderate development (L2)
25  Strict protection (L3)
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Table  4
The combination of different value of the four parameters in each given scenario.

Scenario GDP growth
rate (%)

Population growth
rate (‰)

Technology investment
proportion (%)

Living space per capita
(m2 per capita)

Remark

BDS 12 5 30 30 Baseline development mode (E2P2T2L2)
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FDS 18  8 30 

SDS  8 3 35 

HDS 12  5 35 

cenario, the economy and population continue to increase at a
igher speed. Furthermore, the influence of the progress in science
nd technology, as well as the improvement in the living condition
f resident, were also taken into account in this scenario to predict
he land use demands in Panyu.

.3.2.3. Scenario 3: Slow Development Scenario (SDS). Contrary to
DS, the main purpose of SDS is to protect agriculture and orchards
s much as possible. Undeveloped land (agriculture and orchards)
s strictly limited to conversion into urban land by local government
egulation. The GDP growth rate, population growth rate, and liv-
ng space per capita are assumed to be at the lowest level with
egard to the future urban development, except for the technology
nvestment proportion.

.3.2.4. Scenario 4: Harmonious Development Scenario (HDS). To
alance the appropriate ecological and socio-economic benefits,
DS is constructed as a more human-oriented and sustainable
rban development mode with a trade-off analysis between eco-
omic development and land conservation. The speed of economic
nd population growth are held at their current rate. At the same
ime, to promote land use efficiency, the proportion of technology

nvestment is assumed to have more input in industry, and the liv-
ng condition and environment of residents are also improved by
onsidering people orientation. Hence, the living space per capita
s set to a maximum value of 35 m2 per capita.

Fig. 10. The simulation process and results of lan
35 Fast development mode (E1P1T2L1)
25 Slow development mode (E3P3T1L3)
35 Harmonious development mode (E2P2T1L1)

5.3.3. Results of scenario simulations
According to these four different scenarios discussed above, the

SD module was used to project the land use demands under four
different development options, which derived via the adjustment
and combination of various control variables. The simulation pro-
cess and results for land use demands were depicted in Fig. 10 and
Table 5.

Fig. 10 clearly shows the change in each land use demands under
different scenarios. The amount of each urban land use continues
to increase from 2008 to 2030. Among the scenarios, the growth
range of urban land use demand in FDS is largest in the forecast
period, but that in SDS is smallest. Table 5 illustrates the forecast-
ing land use demands of Panyu in 2030, wherein urbanization in
BDS is shown to consume more undeveloped land than SDS, but
less than FDS. Under FDS, more cropland and open space are occu-
pied to pursue economic development. Under HDS, the amount of
urban land area is about 294.04 km2, roughly similar to that in BDS
(283.44 km2). The demand for industrial land in HDS is only about
76.35 km2, which is much less than one in BDS. However, the num-
ber residential and commercial lands of the former are higher than
those of the latter.
5.4. Implementation of the model

After obtaining land use demands by the SD module, we used
the HPSO module to optimize land use pattern based on these land

d use demands under different scenarios.
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Table 5
The land use demands for Panyu in 2030 under different scenarios.

Scenario Industrial Residential Commercial Undeveloped Restricted

BDS 90.5892 144.46 48.3873 358.5542 132.9084
FDS 99.9388  230.823 72.7322 238.4967 132.9084
SDS 70.2365  114.537 38.0375 419.1797 132.9084
HDS  76.3503 165.857 51.8363 347.9471 132.9084
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2030. From the comparison of these optimization results, there are
some obvious similarities and differences among the spatial pat-
terns of land use in each scenario. First, the allocations of industrial,
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Fig. 11. The optimization process of land 

se demands. In the HPSO algorithm, a swarm of 50 particles are
dopted, and the maximum iteration number (t) is set to 400. By
onsidering the trade-off between the four objectives (suitability,
ompatibility, compactness, and distance to developed land) in the
DHPSO-LA model, the weight values of a, b, c and d are all set to
.25.

To prove the feasibility of the proposed model, an optimiza-
ion process of land use allocation under BDS was first carried out
Figs. 11 and 12).  The series of images in Fig. 11 shows the optimum
utputs from different iterations. Initially, each cell of land use is
andomly located in the study region. As the iterations progress,
he formulated patterns appear to be increasingly compact. A close
nspection reveals that after 100 iterations, most land use cells are
t locations that have balanced combinations of suitability, com-
atibility, compactness, and distance to developed land. The land
se pattern started to stabilize after 200 iterations. Finally, the opti-
um  pattern of Panyu land use is presented in the last image. Fig. 12

llustrates a change in the utility values of the optimum outputs
rom the objective function as the iterations progress (specified by
DS). The curve shows that the value rapidly increases in the early
tage of the optimization, gradually becomes stable, and finally lev-
ls out after 200 iterations. The search will spend about 15 min  by
sing a computer with Intel(R) Core(TM) 2, 2.33 GHz CPU. From the

patial distribution of land uses in Fig. 11,  the patterns of industrial,
esidential, and commercial land are very compact, conforming to
he urban planning concept of promoting compact land use form.
hus, the proposed model is proven to be an appropriate method for
ttern by using SDHPSO-LA model in BDS.

land use optimization allocation, and can provide decision-making
support for planners of land resource management.

According to the land use demands generated from four scenar-
ios by SD, we  further carried out scenarios for the optimization of
Panyu land use allocation. As can be seen in Fig. 13,  the optimiza-
tion results of BDS, FDS, SDS, and HDS are successfully produced
to show the spatial distribution of all future urban land uses in
0 50 100 150 200 250 300 350 400

Iterat ions

Fig. 12. Utility improvement with iterations by the proposed SDHPSO-LA model in
BDS.
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ig. 13. Comparison of optimization results between scenario BDS, FDS, SDS, and
DS.

esidential, and commercial lands have almost the same pattern
nd mainly located at the north of Panyu. Most of the southern
rea is undeveloped land used for agricultural development. Among
our scenarios, the spatial distribution of the allocated future urban
evelopment under FDS expands and occupies the largest amounts
f Panyu areas to meet the need of socio-economic development.
he land consumptions for residence and industry are especially
trengthened to encroach and engulf more undeveloped land (agri-
ulture and orchards). In contrast, the urban land use optimization
ollows a mode based on strictly confined land use in SDS, where
griculture and orchards are well protected. Indeed, urban areas
n this scenario increase the least, which is the result of forbid-
ing the occupation of some undeveloped lands, and can influence
conomic development. As regards BDS, most land use allocation
s expected to occur within and around the appropriate places in
ccordance with the planning objectives. However, the spatial dis-
ribution of future urban development for HDS differs from that
or BDS in some ways, mainly due to the difference between the
and demand for residence and industry in the two scenarios. The
bove results derived by various scenarios can provide decision
akers with references for land use management, both in numer-

cal assignments as well as spatial and temporal scales from 2008
o 2030.

.5. Analysis of scenario results

The actual land use in 2008 and the optimization pattern

llocation in each scenario were compared based on spatial over-
ay analysis to provide spatial patterns of land conversion from
ndeveloped land to industrial, residential, and commercial land
Fig. 14). Such that the land use change of Panyu in the future under
Fig. 14. Comparison of the land conversions from undeveloped land to industrial,
residential and commercial land under different scenarios.

different “what-if” of urban policies can be examined and analyzed
to help us to understand the dilemma of urban development.

Fig. 14 indicates that the socio-economic development of BDS
following the current trend increases the demand for urban land
(283.44 km2) in 2030. Newly increased urban land is predicted to
occupy the undeveloped land around the original urban land in
2008, which is roughly similar situation to that of HDS (Fig. 14).
However, a notable difference in demand for residential and indus-
trial land use exists between BDS and HDS. For example, the
amount of industrial land encroaching undeveloped land in BDS
(35.40 km2) is more than that in HDS (28.58 km2), whereas the
amount of residential land encroaching undeveloped land in the
former (56.04 km2) is much less than that in the latter (69.21 km2).
Such a land use pattern in BDS can easily cause problems in the
residential environment. These problems include housing pressure
arising from population growth, as well as air and noise pollution
from factories. Therefore, BDS is not the best option for Panyu’s
future development.

With regard to FDS, exhaustion of the supporting ability of land
resource in Panyu is predicted after Panyu’s rapid development
over the next two  decades. For instance, the sum of residential and
industrial land areas is about 176.44 km2 in 2008 but is expected
to increase to approximately 330.76 km2 in 2030. In particular,
the area of undeveloped land converted to residential land, which
mostly occurs in the northeastern and southern parts of Panyu is
expected to reach 120.99 km2. This scenario may  be contributory
to socio-economic development as well as the improvement of res-

idential space. However, the rapid development of the city also
indicates a loss of vast agricultural and forestal land. In the long
run, the negative effects resulting from the occupation of expan-
sive land resource far outweighs the economic benefits. Therefore,
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he development of FDS negatively affects the sustainability of land
se in Panyu.

By contrast, SDS provides alternative urban land use optimiza-
ion in Panyu in which strict urban planning policy is implemented
o restrict the expansion of urban land (Fig. 14). In this scenario, the
mallest urban areas increase among the four scenarios is reported,
hat is, only 15.27 km2 from 2008 to 2030. Fig. 14 shows that a
mall area of undeveloped land north of the city is allocated to res-
dential and industrial uses. Most undeveloped land in the south
eflects no change in status from 2008 to 2030. These characteris-
ics of land use change due to restricting the occupation of some
ndeveloped land parcels can also have a serious negative impact
n socio-economic development because of lack of support for land
esources. Thus, this scenario does not contribute to the sustainable
evelopment of Panyu.

In HDS, with the demand of socio-economic development and
and conservation considered, urban land in Panyu is predicted to
ncrease by 86.51 km2 from 2008 to 2030. In this scenario, more
echnological advances are introduced into industry to improve
and use efficiency and protect undeveloped land from being
espoiled. Contrary to the BDS scenario, a reasonable size of res-

dential land in HDS (165.86 km2) can relieve the pressure of the
ncreasing demand from residents. Hence, this human-oriented and
ustainable urban development scenario among the four scenarios
eems the most suitable for Panyu’ development.

In summary, the analysis of scenarios indicates that land use
attern is driven by economic and social forces and restricted
y land policies. In future, the development of Panyu city has to
ace a dilemma of the continuous urban expansion versus limited
and resource. Effective planning and management must be imple-

ented to solve this dilemma, and the proposed model provides
 convenient method to examine and analyze relevant policies in
and planning and management spatially and explicitly.

. Conclusion

Land use change is a complex process involving the interaction
n space and time of socio-economic and physical components at
ifferent scales. In the past, a number of models have been applied
o land use spatial allocation but only address micro-scale interac-
ion. Macro-level socio-economic variables and driving forces are
eldom considered in these models. With the combination of sys-
em dynamics (SD) and hybrid particle swarm optimization (HPSO),

 novel land use allocation model named SDHPSO-LA, is presented
n this article. Different from the previous works, the proposed

odel addresses cross-scale interactions in land use modeling. At
rst, the SDHPSO-LA model projected land use demands by the
D module, which considered the regional economic inequality,
opulation migration, policy influences and their interactions at
acro-scales. Then, hybrid particle swarm optimization (HPSO)
odule was used to generate optimal land use pattern based on

uitability map  and spatial constrains at micro-scales.
As a heuristic method, PSO has been proven as an effective

lgorithm for solving complex combination optimization prob-
ems. The original PSO is customized to continuous function value
ptimization. However, land use allocation belongs to a typical
iscrete combinatorial optimization problem. The original PSO can-
ot directly solve this problem. In this article, PSO is modified
y incorporating discrete genetic operators, namely crossover and
utation, so that it can be suited to solve spatial combinatorial

ptimization problems. Moreover, the hybrid strategy accelerates

he convergence speed so that PSO can solve land use allocation
roblems in large areas.

The SDHPSO-LA model was then applied to the creation of opti-
al  land use patterns in Panyu, a rapidly developing region in
lling 257 (2013) 11– 24 23

China, which is involved an area of 131,093 cells. Four scenarios of
land use pattern in 2030, namely BDS, FDS, SDS and HDS, have been
successfully generated by using this proposed model. Each sce-
nario takes about 15 min  for finding a near-optimal solution. This
indicates that the SDHPSO-LA model is an efficient optimization
technique for generating alternative land use patterns. The success-
ful application of the SDHPSO-LA model indicates that it can reflect
the complex interactions in land use system at both macro-scales
and micro-scales. Furthermore, the model also enables planners
and stakeholders to test and compare the gains under different sce-
narios. Indeed, the model is a useful exploratory tool for generating
alternative land use patterns.
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