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Abstract. This paper presents a new method to discover knowledge for
geographical cellular automata (CA) by using a data-mining technique. CA have
the ability to simulate complex geographical phenomena. Very few studies have
been carried out on how to determine and validate the transition rules of CA
from observed data. The transition rules of traditional CA are usually expressed
by mathematical equations. This paper demonstrates that the explicit transition
rules of CA can be automatically reconstructed through the rule induction
procedure of data mining. The explicit transition rules are more intuitive to
decision-makers. The transition rules are obtained by applying data-mining
techniques to spatial data. The proposed method can reduce the uncertainties in
defining transition rules and help to generate more reliable simulation results.

1. Introduction

In recent years, there has been an increasing number of studies on the

development of geographical cellular automata (CA) for simulating complex

systems. CA have been applied to the simulation of wildfire propagation (Clarke et al.

1994), population dynamics (Couclelis 1988), and urban evolution and land-use

changes (White and Engelen 1993, Batty and Xie 1994). They are also used to

generate idealized or optimized urban forms for land-use planning (Li and Yeh

2000, Yeh and Li 2001a). CA were originated from the research of self-reproducing

systems done by Ulam and Von Neumann in the 1940s (White and Engelen 1993).

The ‘game of life’ developed in 1970 by the mathematician Conway can also be

regarded as an explicit CA game (Gardner 1971, Portugali 2000). However, much

influence on later developments of CA techniques can be attributed to Wolfram’s

(1984) studies, which demonstrated that the origins of the complexity in natural

systems could be investigated through dynamic models called ‘cellular automata’.

CA have great potential for geographical applications because of their strong
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modelling capabilities. Tobler (1979) was perhaps the first to recognize the

advantages of CA in solving geographical problems (White and Engelen 1993). In

his cellular space model, the state of a cell is determined by the states of a set of

‘neighbour’ cells according to some uniform location-independent rules. The basic

principle of such models is to use a cell-space representation to realize spatial

dynamics. The simulation of population dynamics is a good demonstration of CA’s

capabilities in modelling complex natural systems. Couclelis (1988) has successfully

generated a variety of different spatio-temporal structures of rodent population by

using a very simple one-dimensional cellular automaton. Her research indicated

that the whole range of complex and apparently bizarre population dynamics can

be easily reproduced by the simple cellular automaton.
Urban simulation may be the most successful example of the use of CA

techniques in solving geographic problems (White and Engelen 1993, Batty and Xie

1994, Clarke and Gaydos 1998, Wu and Webster 1998, Li and Yeh 2000). Couclelis

(1985, 1997) carried out some early research on urban simulation using cellular

automata. She showed that CA might be used as an analogue or metaphor to study

how a variety of urban dynamics might arise. Batty and colleagues (Batty and Xie

1994, 1997, Batty et al. 1999) also carried out some interesting research on urban

CA in the early 1990s. They used CA to model the growth of built-up areas using

diffusion-limited aggregation (DLA) (Batty et al. 1989). However, they later

developed a general class of CA which emerged through insights in computation

and biology (Batty and Xie 1994). Their models are very similar to the Game of Life

in which each cell can only take on one of two states (dead or alive).

CA are flexible and transparent when they are used to solve geographical

problems. It is relatively easy to define transition rules. CA can have a variety of

applications, such as testing hypotheses of urban theories (Webster and Wu 1999),

simulating urban forms and land-use dynamics (Clarke and Gaydos 1998), and

generating development alternatives for conserving land resources (Li and Yeh

2000). It is also possible to incorporate planning objectives in simulating alternative

urban forms and densities for urban planning (Yeh and Li 2001a, 2002).

The definition of transition rules in geographical CA is strongly dependent on

domain knowledge and individual preferences. In urban simulation, the transition

rules are usually given according to the intuitive understanding of the process of

urban growth. Transition rules can be defined using a variety of mathematical

expressions, such as nested neighbourhood spaces and distance decay functions

(Batty and Xie 1994), predefined parameter matrices (White and Engelen 1993),

linear equations of multicriteria evaluation (MCE) (Wu and Webster 1998), logistic

models (Wu 2002), grey-cell or fuzzy states (Li and Yeh 2000), and neural networks

(Li and Yeh 2002). However, most of these transition rules are not explicit because

they use mathematical equations instead of using explicit transition rules.

A critical issue in CA modelling is how to obtain domain knowledge and

determine transition rules in an objective way. The number of ways of defining

transition rules seems to be virtually unlimited. The calibration of geographical CA

becomes very difficult because a large number of rules have been used. Usually,

transition rules consist of many variables and parameters, but there are many

uncertainties in determining parameter values. Urban CA are very sensitive to

transition rules and their parameter values (Wu and Webster 1998, Li and Yeh
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2002, Wu 2002). The calibration of CA is very important for producing realistic

urban simulation.
There are very limited studies on the calibration of geographical CA. Most of

the existing CA are based on the so-called ‘trial and error’ approach. The visual test

is the main method for validating urban CA in early studies (Clarke et al. 1997,

White et al. 1997, Ward et al. 2000). There have been several attempts to develop

more elaborate methods to tackle the problems of uncertainties in defining

transition rules and parameter values. Computer search algorithms have been

proposed to derive optimal parameter values according to the best fit between the

observed data and various simulated results (Clarke and Gaydos 1998). This

method involves intensive computation by comparing numerous possible combina-

tions of parameter values. Artificial neural networks have been incorporated into

urban CA for deriving parameter values automatically (Li and Yeh 2002).

However, it is difficult to comprehend the meanings of these parameter values

because of the back-box approach of neural networks. Wu (2002) provides a

method to estimate the global development probability by using a logistic

regression model. The initial global probability is calibrated according to historical

land-use data. It seems to be easy to understand the meanings of the coefficients in

the logistic regression equation. However, logistic equations cannot provide explicit

rules. Moreover, mathematical equations are sometimes difficult to capture the

complexity of relationships.

In this study, a new method based on knowledge discovery or machine learning

is proposed to reconstruct the transition rules of geographical CA. Existing CA

have adopted the heuristic approach in defining transition rules. The approach is

associated with uncertainties because it is subject to the influence of individual

knowledge and preferences. Moreover, the simulation of complex geographical

phenomena often involves the processing of a large set of spatial data. Automatic

knowledge discovery from spatial data should provide significant improvement on

the performance of geographical CA.

2. Knowledge discovery of transition rules for geographical cellular automata

The process for acquiring domain knowledge is tedious and time-consuming.

Although experts are capable of using their knowledge to solve problems, they

cannot guarantee that the knowledge is explicitly expressed in a systematic, correct

and complete form. A well-known problem when creating expert systems is often

called the ‘knowledge acquisition bottleneck’ (Huang and Jensen 1997).

We propose using data mining to solve the problems of the difficulties and

uncertainties in knowledge solicitation in defining the transition rules of CA. Data

mining involves discovering and capturing knowledge embedded in a large data set

automatically. This is usually done through machine learning. There are a number

of machine-learning algorithms available for data mining, such as ID3 (Quinlan

1986), C4.5 (Quinlan 1993), CART (Breiman et al. 1984), IB1, IB2, MPIL1, and

MPIL2 (Romaniuk 1993).

Quinlan (1979, 1993) carried out pioneering studies on rule discovery by

induction and machine-learning procedures. The first inductive learning program

was called C4.5 and has been widely used in many applications (Berry and Linoff

1997). See5 for Window and its Unix counterpart, C5.0, are the most updated

version of C4.5. The series of C4.5 and See5/C5.0 systems have been used to
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reconstruct the rules for classifying remote-sensing imagery (Defries and Chan

2000). Studies have demonstrated that machine learning can provide an accurate

and efficient tool for land-cover classification using remote-sensing data (Friedl et al.

1999). Recently, there have also been several attempts to apply these systems to soil

analysis by using GIS data (Eklund et al. 1998, Moran and Bui 2002).

The simulation of geographical phenomena usually involves a vast volume of

spatial data. Techniques for constructing the transition rules of CA need to be

automated as much as possible. A number of advantages can be identified by using

machine-learning systems (e.g. C4.5 and See5/C5.0) to reconstruct the transition

rules of geographical CA:

. Decision-tree learning is the most efficient form of inductive learning (Huang

and Jensen 1997).
. These systems can automatically determine threshold values and create a

knowledge base from observation data.

. They can be conveniently integrated with GIS for using spatial data.

. CA are simultaneously calibrated during the rule-induction process from data

mining.

. The retrieved rules are explicit for easier understanding and implementation.

This study applies data-mining techniques to the automatic reconstruction of

transition rules for geographical CA using urban simulation as an example

(figure 1). A data-mining tool, the See5 system, is used for discovering transition

rules. It is based on the ‘information gain ratio’ to determine the splits at each

internal node of the decision tree (Quinlan 1993). The information gain measures

Figure 1. Data mining for reconstructing the transition rules of geographical CA.
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the reduction in entropy in the data produced by a split. At each node, the tree is

divided based on the subdivision that maximizes the reduction in entropy of the

descendant nodes. First, imagine selecting one case at random from a training data

set S and announcing that it belongs to some class Cj. This message has the

probability:

freq Cj , S
� �

Sj j ð1Þ

where freq (Cj, S) is the number of cases in S belonging to class Cj, and |S| is the

total number of observations in S.

The information from such a message (entropy) is calculated by:

info Sð Þ~{
Xk

j~1

freq Cj, S
� �

Sj j | log2

freq Cj, S
� �

Sj j ð2Þ

Consider that S has been partitioned into n outcomes for a test X. The expected

information is:

infox Sð Þ~
Xn

i~1

Sij j
Sj j|info Sið Þ ð3Þ

The information gained by splitting S using X equals:

gain Xð Þ~info Sð Þ�infox Sð Þ ð4Þ

The bias inherent in the gain criterion with a large number of splits should be

corrected by normalizing gain(X) using split info(X) (Quinlan 1993):

split info Xð Þ~{
Xn

i~1

Sij j
Sj j| log2

Sij j
Sj j

� �
ð5Þ

Then,

gain ratio Xð Þ~gain Xð Þ=split info Xð Þ ð6Þ

The ratio can avoid the bias with too many splits during the rule induction

procedure. S will be recursively split to ensure that the gain ratio is maximized at

each node of the tree. This procedure continues until each leaf node contains only

observations from a single class, or there is no gain in information by further

splitting. The tests for the continuous attributes are also simple by partitioning each

attribute into two outcomes at each node using a threshold. The optimal threshold

is also determined according to the gain ratio. The values of an attribute are first

sorted, and the midpoint of each interval is used as the representative thresholds

(Quinlan 1993). A number of threshold values may be used for the partition. The

threshold value with the greatest gain ratio value is selected at each node (DeFries

and Chan 2000).

The above procedure automatically creates decision trees or rule sets based on

the criterion of ‘information gain ratio’ (Quinlan 1993). The same procedure can be
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applied for reconstructing transition rules in simulating geographical phenomena.

Many existing urban CA do not provide concrete transition rules but use

mathematical equations to estimate conversion probability. In fact, decision-makers

are more familiar with explicit rules. For example, it is much easier for them to

comprehend the following explicit rules:

Rule 1:

IF Land-use types~forest or wetland

THEN No development is allowed

Rule 2:

IF Land-use types~cropland

Distance to urban centresv10 km

Number of developed cells in the neighbourhoodw16

THEN Development is allowed

GIS and remote sensing can provide spatial data for discovering the transition

rules of geographical CA (figure 1). In this study, remote-sensing images of two

different years are treated as the observed data for extracting the transition rules.

The transition rules based on the two images reveal the relationship between spatial

variables and land-use conversion for the observation interval (DT) (figure 2). CA

use discrete time to update the state of each cell step by step. There are many

iterations before the final results are obtained in urban simulation. The transition

rules from data mining can be applied to all iterations for simulating urban

development based on the past development trend. The assumption is that the

relationship between spatial variables and land-use changes do not change.

The projection from these two images can be used to estimate future land

consumption. This assumes that the rate of urban growth is constant. However, the

rate of urban growth may not be the same because of changes in economic, social

and political factors. One way to capture the growth trend is to use more than two

years of satellite images (figure 3). These extra remote-sensing data can be used to

provide the aggregated information about the development trajectory for

simulating future urban development. If extra remote-sensing data are not

available, the aggregated information about the growth trend can be estimated

by using other sources of data, such as statistical yearbooks.
There is a discrepancy between the iteration interval, the observation interval,

and the simulation interval (figure 2). It may be ideal if the observation interval

(DT) is equal to or close to the iteration interval (Dt) so that the mined transition

rules can be directly used in urban simulation. The acquisition of such observation

data is subject to the availability of data. The observation interval of remote-

sensing data is usually yearly based, while the iteration interval of CA is much

smaller. It is impractical to collect data within the iteration interval of Dt.

Moreover, the observed data cannot comprehend the long-term trend if the

observation interval is too short. DT equal to 2–3 years may be practical in most

situations. Observed data with the interval of several years have been commonly
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used in the calibration of CA. For example, Li and Yeh (2002) calibrate CA using

two satellite images with the interval of 5 years. The calibration in Wu’s study

(2002) is even based on the land-use maps with an interval of 20 years.
There is a need to discuss how the extracted rules from the observed data are

applied to each iteration of urban simulation. First, the relationship between the

number of iterations (K), the iteration interval (Dt) and the observation interval

(DT) is as follows (figure 2):

K~DT=Dt ð7Þ
where DT is the observation interval for the two remote-sensing images, Dt is the

iteration interval between t and tz1, and K is the number of iterations.

Transition rules from data mining only determine whether land-use conversion

will take place for the larger interval of DT. However, it is possible to estimate the

proportion of land-use conversion between t and tz1. The estimation can be

obtained by using the following equation:

Dqt~DQt=K ð8Þ
where DQt is the amount of land-use conversion for the observation interval, and

Dqt is the amount of land-use conversion for the iteration interval.

When DTwDt, the land-use conversion in Dt only amounts to a small

proportion of that in DT. Moreover, there is no way to identify the exact locations

that will have land-use conversion in the smaller period. Dqt can decide the system

birth rate at each step of the iterations. A random variable (c) is then used to

Figure 2. Reconstructing transition rules using two years of observation data.
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determine the locations of land-use conversion at the smaller interval (figure 4). The

following additional rule is used to obtain the smaller portion of land-use

conversion at each iteration:

IF x(i, j) should be converted according to the original transition rules that are

obtained from the observation interval of DT

& x(i, j) have not developed at t21

& c¡b0

Figure 4. Assigning land-use conversion at the iteration interval.

Figure 3. Monitoring of development trajectory using additional remote-sensing data.
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THEN x(i, j) will be developed at t

b0~
Dq0

DQ0
~

1

K
ð9Þ

where x(i, j) is the cell at location (i, j), DQ0 is the amount of land-use conversion

retrieved from the two images, and Dq0 is the amount of land-use conversion for its

iteration interval.

b0 can be considered a global birth rate or a development probability for the

smaller interval of Dt. The use of random variables is important for addressing the

stochastic perturbation or uncertainties in complex geographical phenomena. This

can help to achieve more realistic simulation results. The final land-use conversion

is usually determined by the comparison of a development probability with a

random variable in many urban CA (Batty and Xie 1994, Wu and Webster 1998).

For example, a cell will be developed if the calculated development probability is

greater than a random value (Wu 2002).

Since the amount of land-use conversion is changing with time, it should be

calculated from various years of satellite images instead of just using two images.

The above additional transition rule should have the following generic form by

replacing b0 with bt:

IF x(i, j) should be converted according to the original transition rules that are

obtained from the observation interval of DT

& x(i, j) have not developed at t21

& c¡bt

THEN x(i, j) will be developed at t

bt~b0|
DQt

DQ0
~

1

K
|

DQt

DQ0
ð10Þ

bt is used as the global constraint to reflect the fluctuation in the amount of

land-use conversion (DQt). The additional rule is important for capturing

development trajectory. There is an issue about the uncertainty in deciding land

development at the iteration interval. The random variable (c) may introduce the

‘noise’ in the simulation process because of the uncertainty in determining the

locations of development for the smaller iteration interval. Uncertainty may be

minimized by making the observation interval (DT) close to the iteration interval

(Dt). However, this can be a problem, because the long-term trend cannot be

captured. There is a need to balance the trade-off by choosing a suitable interval for

the observation data (e.g. 2–3 years). CA are based on discrete time, and a sufficient

number of time steps (iterations) are needed to ensure simulation accuracy.

However, there is no agreement on how many time steps should be used. Many CA

usually run from 100 to several hundred iterations.

3. Implementation and results

3.1. Training data

The proposed model has been tested in Dongguan, a city in the Pearl River

Delta of Southern China. Dongguan has an area of 2465 km2 with a city proper and

29 towns. Rapid urban expansion has been witnessed in the Pearl River Delta

because of fast economic development (Li and Yeh 1998). A number of CA models
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have been developed for simulating land development in the study area. The first

model uses ‘grey’ states to simulate the continuous conversion process of urban

development (Li and Yeh 2000). The constraints retrieved from GIS are imported

to CA to explore various possible development scenarios. Little attention has been

paid to the calibration of the model. The second model is to simplify the procedure

of defining transition rules and facilitate the calibration of CA by using neural

networks (Li and Yeh 2002). However, the transition rules of this model are not

transparent because of the back-box approach of neural networks.
This proposed model is the successor of previous models, but it has made

significant improvements with a strong capability of rule discovery. In this study,

the transition rules are automatically reconstructed from the GIS databases. A

series of spatial data are used for the data mining. The data include the layers of

urban development, proximity variables, neighbourhood conditions, and physical

attributes. Studies indicate that urban development probability is decided by these

spatial variables (Wu and Webster 1998, Li and Yeh 2000).

The proposed model is integrated with a GIS for the convenient access to its

spatial data and geoprocessing functions. Table 1 lists the spatial variables used for

the data mining. The target variable is the urban development in 1988–1993, which

was obtained from change detection using the 1988 and 1993 TM images.

Proximity variables were obtained by calculating the distances to roads,

expressways, railways, and urban centres. These variables play an important role in

determining land-use conversion. For example, a higher development probability is

often associated with a site with a closer distance to major transportation routes

and urban centres. Proximity variables can be conveniently derived by using the

distance functions of GIS.
Neighbourhood conditions are essential to the determination of state conversion

of each cell during the iterations of CA. There is a higher development probability

if a site has a larger number of surrounding developed cells. The surrounding

developed cells are counted at each iteration.

The physical attributes of a site also influence the development probability in an

urban simulation. The first variable is land-use types. For example, the

development probability in wetland will be different from that in cropland, even

though other conditions are the same. Information about land-use types was

obtained from the classification of the remote-sensing image. The second variable is

related to the agricultural suitability which represents the productivity of a site. It

was obtained through GIS land evaluation (Yeh and Li 1998). The third variable is

associated with terrain features which pose constraints to urban development. The

layer of the slope was generated from the DEM model of GIS.

All these spatial data were converted to raster format to facilitate the calculation

and simulation. The resolution was fixed at a ground resolution of 30 m2 to match

the resolution of the satellite TM images. Data mining was used to reconstruct the

rules that reveal the relationships between these spatial variable and urban

development. The simulation assumes that the spatial relationship will not change,

although the global constraint (the amount of land-use conversion) may be subject

to fluctuations.

Our previous study used only two satellite images to train the neural-network-

CA model for simulating future urban development (Li and Yeh 2001). It assumes

that the rate of urban growth is constant for all periods. This assumption may not
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Table 1. Spatial variables used for data mining.

Spatial variables Acquisition methods Value ranges

1. Target variable 1: converted to urban areas
Urban development in 1988–1993 Classification of satellite TM images 0: non-converted
2. Proximity variables
Distance to the city proper (PropD) Eucdistance of ARC/INFO GRID 0y60 km
Distance to town centres (TownD) 0y30 km
Distance to roads (RoadD) 0y20 km
Distance to expressways (ExprD) 0y60 km
Distance to railways (RailD) 0y60 km
3. Neighbourhood function
Number of developed cells in the 767 neighborhood (Nsum) Focalsum of ARC/INFO GRID 0–49
4. Physical attributes of a site 1: crop
Land use types (Land) Classification of satellite TM images 2: bared soil

3: construction sites
4: orchard

5: built-up areas
6: forest
7: water

Agricultural suitability (Agsu) Land evaluation of GIS 0y1
Slope (Slope) DEM of GIS 1y90‡
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be true because the dynamics of economy, policy and resource supply will result in

changes in the land-use conversion process As discussed above, a time sequence of

satellite images can help to comprehend the long-term trends of urban

development. Satellite TM images in four years, namely 10 December 1988, 24

December 1993, 29 August 1997, and 20 November 2001, were used to calibrate the

CA model. These satellite images can provide useful information about the trend of

land-use changes in the region.

3.2. Data sampling and data mining

The ability to make accurate predictions is important for applying decision trees

or rule sets to classification. The accuracy of a classifier should not be judged by

measuring how well it does on the cases used in its construction. It is more

reasonable to assess the performance of the classifier on new cases. In this study,

the empirical data from GIS and remote sensing were divided into two separate

sets. One was the training data set for deriving the rules, and the other was the test

data set for confirming the performance of the classifier.

Sampling techniques were also used to serve two main purposes in this study.

First, sampling techniques can help to explore a huge set of spatial data. It is

inefficient to process the entire set of spatial data for data mining. Even though

See5 is relatively fast, a much longer time is needed for building decision trees,

especially when options such as boosting are employed. Second, it is undesirable to

use a whole set of data for mining because of spatial autocorrelation. Bias will be

introduced to the analysis results if the training data have a severe correlation.

The use of a smaller set of training cases may reduce the classifier’s predictive

accuracy. We first construct a classifier from the sample and then assess the

classifier on a test data set. Figure 5 shows the relationships between the increase in

sampling points and prediction error. It is clear that the prediction error can be

significantly improved by using more sampling points within the range of 0–8% of

the training data. The prediction error is 35.2% by using 1% of the data, and it is

reduced to 25.0% by using 10% of the data. The improvement rates are insignificant

Figure 5. Sampling rate and prediction error.
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after the first 10% of the data. Therefore, this study only used 20% sampled data to

derive the transition rules.

A technique known as ‘boosting’ has been developed in the field of machine

learning. See5/C5.0 has incorporated this technique, adaptive boosting, to generate

several classifiers rather than one. First, a tree is generated as usual, which may

make mistakes in some cases in the data. When the second classifier is constructed,

more attention is paid to these cases in an attempt to get them right. This is

repeated for n trials. When a new case is to be classified, each classifier votes for its

predicted class, and the votes are counted to determine the final class. Boosting can

reduce bias and avoid over-fitting of decision trees (Haruno et al. 1999)

Lower error rates are expected by using this technique. The effect of boosting is

assessed by comparing the predictive errors from the boosting method and non-

boosting method. The prediction error is 21.2% after boosting is applied to the 10%

sampled data set. The error rate for the test cases was reduced by about 12%

compared with that of the original classifier.

A very large and complex decision tree is often produced, and the tree may

overfit the training data. If the training data contain errors, overfitting the tree to

the data can lead to poor performance (Friedl et al. 1999). The original tree must be

pruned to minimize such a problem. See5 provides the pruning option for

simplifying decision trees but maintaining sufficient accuracy. A large tree is first

grown to fit the data closely and then pruned by removing the unnecessary parts

which are predicted to have a relatively high error rate. A pruning rate of 25% was

used to consider the trade-off between tree accuracy and size.

3.3. Simulation results

The proposed model was tested by simulating the urban development in the

study area in 1988–2005. The observation data mainly include the 1988 and 1993

satellite TM images. The 1997 and 2001 images are just used for capturing the

urban development trend. The initial urban areas were based on the classification of

the 1988 TM image. Figure 6 shows the development trajectory of the study area in

1988, 1993, 1997 and 2001 according to the classification of satellite images.

Figure 6. Monitoring of the development trajectory of Dongguan using the 1988, 1993,
1997, and 2001 TM images.
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Urban expansion was astonishing in 1988–1993 as the urban areas were more

than double during this short period. The rate of urban expansion decreased in the

later periods because of government intervention. If the projection of urban

development is based only on the 1988 and 1993 observation data, the simulated

urban areas will be much larger than the actual areas for the later periods.

Therefore, the total amount of urban areas in each period can be used as the global

constraint for urban simulation. This can ensure that the amount of the simulated

urban areas is equal to the amount of the actual urban areas. Given n iterations,

interpolation was carried out to derive the amount of conversion for each step from

t to tz1 (figure 3).

There are many iterations of simulation before the outcome is obtained. A

shorter interval between t and tz1 means that a larger number of iterations are

required. Although there is no consensus on exactly how many iterations should be

used, 100–200 of iterations are quite normal for producing a realistic simulation.

The subtle patterns cannot be produced if there are too few iterations. This is

because local interactions only take place at each iteration of urban simulation.
Table 2 lists the parameter values that were used in the simulation. There are

200 iterations in the simulation of urban growth for each period. The amount of

urban growth (DQt) for each period was obtained from the change detection of

remote sensing. The global constraint factor (bt) was calculated according to

equation (10).

The rule sets were obtained from the data-mining procedure using the See5

system. The following is part of the rule sets discovered by applying the data mining

to the GIS and remote-sensing data:

Rule 1:

IF PropDv40

RoadDv~5

Nsumw18

Agsuv0.8

Land~1

THEN Converted to urban development [confidence: 0.92]

Table 2. Iterations, intervals, and amount of urban growth for each period.

1988–1993 1993–1997 1997–2001 2001–2005

K (iterations) 200 200 200 200
DT (year) 5 4 4 4
Dt (year) 1/40 1/50 1/50 1/50
DQt (km2) 233.3 90.6 62.9 25.0
Dqt (km2) 1.167 0.453 0.315 0.125
bt 0.0050 0.0019 0.0013 0.0005
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Rule 2:

IF PropDw12

PropDv~55

TownDw11

RoadDv~3

ExprDv~45

RailDv~12

Nsumw~8

THEN Converted to urban development [confidence: 0.82]

Rule 3:

IF PropDv~25

TownDw7

Nsumw~12

Agsuv~0.5

Land~4

Slopev~6‡

THEN Converted to urban development [confidence: 0.86]

Rule 4:

IF PropDv~48

TownDw13

RoadDw1

RoadDv~5

Nsumw~9

Agsuw0.2

Agsuv~0.4

THEN Converted to urban development [confidence: 0.90]

Each applicable rule votes for its predicted class with a voting weight equal to

its confidence value. The confidence value is also automatically obtained by See5

during the data-mining process. The votes are summed up, and the class with the

highest total vote is chosen as the final prediction. It is straightforward to use these

rule sets obtained from data mining as the transition rules for urban simulation.

These rule sets are very similar to the practical rules used by planners and decision-

makers. It is much easier to understand these rule sets than mathematical

equations.

The amount of land-use conversion changes with time. bt is used to reflect the

changes in urban growth. The following additional rule is jointly used to decide the

final land-use conversion at each iteration from t to tz1:
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Additional rule:

IF c¡

0:0050 in 1988{1993ð Þ
0:0019 in 1993{1997ð Þ
0:0013 in 1997{2001ð Þ
0:0005 in 2001{2005ð Þ

8
>><

>>:

THEN Converted to urban development

The model simulates the urban growth of the study area in the period of

1988–1993, 1993–1997, and 1997–2001. The initial stage is based on the 1988 actual

urban areas detected from remote sensing. Figure 7 compares the simulated and

actual urban development in 1988–1993, 1993–1997, and 1997–2001. Figure 8 is a

prediction of urban development in 2001–2005 based on the development

trajectory. The rate of urban expansion is much lower in this period than in

previous years.

3.4. Examining the validity of the model

It is unrealistic to reproduce the exact patterns of a natural phenomenon

because of its complexity and modelling limitations. However, the assessment of

goodness of fit is still required to give a general indication of roughly how good the

simulation is compared with the actual development. A simple method to assess the

goodness of fit is based on the spatial overlay between the actual and simulated

urban development (Li and Yeh 2002). In this study, the actual urban areas in 1993,

1997 and 2001 were obtained from the classification of satellite TM images. The

simulated urban areas were compared with the actual urban areas using an overlay

analysis. Table 3 lists the overall accuracy obtained from the cross-tabulation of the

overlay analysis. The overall accuracy is 82.0% for simulating the urban growth in

1988–1993. It becomes 74.8% and 72.4% for simulating the urban growth in

1993–1997 and 1997–2001, respectively. Although the transition rules were derived

from the 1988–1993 images, we are still able to obtain a high simulation accuracy in

the simulation of urban development in 1993–1997 and 1997–2001. This is because

the urban development process captured by the transition rules has not changed

much.

The assessment of the goodness of fit from spatial overlay is just based on a cell-

by-cell approach. It cannot provide any information about the morphology of the

urban spatial structures, such as connectivity, fractals, and compactness. Many

urban applications are usually concerned about the characteristics of spatial

structures. A visual comparison may sometimes provide more meaningful results

for calibrating CA models (Clarke et al. 1997, Ward et al. 2000). The visual

comparison of the actual with simulated urban development indicates that the

model is able to generate plausible simulation results (figure 7).

It is better to use robust and consistent methods for the assessment based on

quantitative indicators. These indicators should be able to describe the

characteristics of spatial patterns and provide useful insights about urban

morphology. However, there is no agreement on which indicator is most suitable

for capturing the characteristics of urban structures because of its complexity. A

variety of aggregated indicators have been proposed for this purpose, including
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Figure 7. Simulated and actual urban development of Dongguan in 1988, 1993, 1997, and
2001.
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entropy (Yeh and Li 2001b), compactness index (Li and Yeh 2000), fractal

dimensions (White and Engelen 1993, Batty and Longley 1994), and Moran’s I (Wu

2002).

In this study, the indicator of Moran’s I was chosen for the assessment of the

aggregated patterns because of its simplicity. It is quite easy to calculate the

Moran’s I values in the GIS package, ARC/INFO GRID. Moran’s I is a useful

spatial indicator that can reveal the degree of spatial autocorrelation (Goodchild

1986). The indicator is able to estimate how close the simulated land-use pattern is

to the actual urban development (Wu 2002). The maximum value is one which

indicates absolute concentration of land use. A smaller value, which can be below

zero, indicates a more even distribution of land use.

Table 4 shows Moran’s I for the actual and simulated urban development in

Table 4. Comparison of Moran’s I between the actual and simulated urban development in
1993, 1997, and 2001.

1993 1997 2001

Actual urban development 0.44 0.66 0.76
Simulated urban development 0.42 0.58 0.71

Figure 8. Prediction of future urban development in 2005 based on the development trend.

Table 3. Overall accuracy of simulation compared with the actual urban development
obtained from satellite images in 1993, 1997, and 2001.

Year 1993 1997 2001

% Correct 82.0 74.8 72.4
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1993, 1997 and 2001, respectively. There is a good conformity between the actual

and simulated urban development because they have similar values of Moran’s I for

each period. The analysis is consistent with the visual comparison. Urban

development sites in the earlier stage (1993) are relatively isolated because of the

prevailing urban sprawls. Urban developments tend to be more compact in the later

years as they continue to grow. According to Moran’s I, the simulated patterns

appear to be slightly more dispersed compared with the actual patterns for all

periods. This is probably because the simulation is affected by some randomness.

Observation data always have a larger time interval than that of simulation.

Interpolation is carried out to yield training data on a finer timescale. A random

variable is used to decide the location of land-use conversion at each iteration. The

problem may be alleviated by using a shorter interval for satellite images. However,

this is subject to the availability of data.

Compared with the neural-network-based CA (Li and Yeh 2002), this model

also has some improvements in terms of accuracy. The overall accuracy is 0.79, and

Moran’s I is 0.40 for the previous model. This is probably because the explicit

transition rules are more easily adapted to complex relationships than mathematical

equations. Simulation accuracy also depends on the degree of complexity of the

study area. It is easy to understand that CA can have a better performance in a

more uniform and smaller area, such as a monocentric city or a highly developed

city. The geographical settings of this study area are fairly complicated, with

various geomorphologic features (e.g. mountains, alluvial plains, and rivers) and

many suburban centres (29 towns). A perfect simulation is impossible because of

the complexity. There are several difficulties in applying the heuristic approach to

the definition of transition rules in the areas of complex environmental settings.

However, data mining seems to be a much better option for reconstructing

transition rules under complex situations. In particular, it can provide explicit

transition rules which are more easily understood by planners and decision-makers

than the mathematical equations derived by other methods.

4. Conclusion

Data mining, which is a rapidly expanding field, can be applied to the discovery

of transition rules of CA. Research on modelling geographical phenomena in

various disciplines using CA is growing. Effective reconstruction of transition rules

is important for simulating complex natural systems. Reliable simulation results

cannot be achieved if the transition rules are not defined in a systematic and

consistent way. This study demonstrates the potential of using data-mining

techniques in automatically deriving the transition rules of CA. The benefits of this

method include a faster rule-base construction, convenient calibration, and

transparent rule structures.

We have attempted to use an innovative method for directly deducing explicit

transition rules of CA based on data-mining techniques. Various transition rules

have been proposed from different studies. These transition rules are not

straightforward because they are mainly represented in the form of mathematical

equations (e.g. conversion matrices, linear equations, and logistic equations). They

are difficult to understand and comprehend by planners and decision-makers.

Sometimes, complex relationships cannot be modelled by rigid mathematical
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equations. The calibration of CA is also difficult when complex mathematical

equations are adopted to estimate the probability of land-use conversion.

The data-mining procedure is convenient and efficient. The explicit transition

rules can be instantly derived from a vast volume of geographical data by using

data-mining techniques. Remote sensing and GIS provide basic information about

spatial variables for data mining. This procedure can minimize the uncertainties

and time consumed in defining and testing transition rules because they are

automatically reconstructed by machine learning. Calibration is automatically

carried out during the rule-induction process. This has significant improvements in

the process of model building.

The experiments were carried out in a region of complicated environmental

settings. There are a variety of terrain features and many suburban centres. The

heuristic approach adopted by traditional CA has difficulties in defining transition

rules and calibrating CA. The transition rules automatically induced from data

mining have been successfully applied to the urban simulation in the region. The

validity of the model has been assessed based on the visual comparison and

the indicator of Moran’s I. The assessment indicates good conformity between the

actual and simulated urban development.

Further studies should examine the influences of discrete time steps on

simulation outcomes. Experiments may be carried out on the search for the optimal

intervals of iterations and observations. This is useful for generating more accurate

simulation results. Model uncertainties should also be assessed for a better

understanding of the implications of simulation.
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