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Optimal location search is frequently required in many urban applications for

siting one or more facilities. However, the search may become very complex when

it involves multiple sites, various constraints and multiple-objectives. The

exhaustive blind (brute-force) search with high-dimensional spatial data is

infeasible in solving optimization problems because of a huge combinatorial

solution space. Intelligent search algorithms can help to improve the performance

of spatial search. This study will demonstrate that genetic algorithms can be used

with Geographical Information systems (GIS) to effectively solve the spatial

decision problems for optimally sitting n sites of a facility. Detailed population

and transportation data from GIS are used to facilitate the calculation of fitness

functions. Multiple planning objectives are also incorporated in the GA program.

Experiments indicate that the proposed method has much better performance

than simulated annealing and GIS neighborhood search methods. The GA

method is very convenient in finding the solution with the highest utility value.

Keywords: Genetic algorithms; GIS; Optimal location; Multiple objectives;

Simulated annealing

1. Introduction

An often encountered spatial decision problem is to search for the best site or sites to

accommodate one or more facilities to generate the best utility values (e.g. the

maximum population coverage and minimum transport cost). Traditional location-

allocation methods before GIS data were available only use relatively small datasets

(Church 1999). The general facility location problem and its variants, including

most location-allocation and p-median problems, are known to be NP-hard

combinatorial optimization problems. Most of these traditional methods cannot

easily handle thousands of demand points and sites in GIS datasets (Church 1999).

This is especially a problem when raster data with many cells are used. Some types

of data aggregation have been used in dealing with large data sets. Although

agglomerative clustering can be used to find good solutions, this problem can be

complicated by including the items that need to be stored at each location. In this

case, clustering will not yield an optimal solution. Goodchild (1979) has pointed out

that data aggregation can have a great effect in the absolute location of a specific

facility. Consequently, there is now substantial literature on heuristic algorithms for

a variety of location problems, among which can be found the well-known simulated

annealing algorithm (Simha et al., 2001).
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Location search usually requires the use of optimization tools. There are two

categories of optimization methods. The first is the local optimization method, such

as simplex, Gauss-Newton, and the Levenberg-Marquart (Zhan et al. 2003). These

local optimization algorithms have limitations because the search may be trapped in

local minima or maxima and their success is heavily dependent on the choice of

initial values. The second is the global optimization method which can avoid such

problems. These algorithms include simulated annealing and genetic algorithms

(GAs). Studies have indicated that GAs are attractive global search tools suitable

for the multimodal objective functions (Zhan et al. 2003). GAs have advantages for

global optimization without using complicated calculations, and they are effective

especially when the number of parameters is very large (Jin and Wang 2001). GAs

are stochastic search algorithms for searching optimal solutions in large and

complex non-linear spaces.

GAs are inspired by Darwin’s theory of evolution as a part of evolutionary

computing (Rechenberg 1973, Holland 1992). The algorithms adopt an evolutionary

process to solve optimization problems based on the mechanism of natural selection.

They have been proven excellent in quickly finding solutions to complex

optimization problems (Goldberg 1989, Mitchell 1996) and have been successfully

applied to a variety of disciplines. Goldberg (1989) demonstrated the flexibility of

GAs as the optimization mechanisms are independent of fitness functions. This

flexibility is desirable as it enables the modification of evaluation functions without

altering the algorithms themselves.

The objective of this paper is to explore the capability of GAs in solving high-

dimensional optimization problems in continuous space. Although GAs have been

widely used for searching optimal parameter values, there are limited studies on the

integration of GAs and GIS for solving optimization problems in resource and

environmental management. The computation for solving spatial decision problems

is very intensive and conventional search algorithms have difficulties in coping with

the complex situations. There are many mathematical methods which can find

optimization solutions very quickly for fairly ‘‘well-behaved’’ problems. However,

these traditional methods tend to break down when the problem is not so ‘‘well-

behaved’’. The use of evolutionary algorithms should be very efficient in solving a

lot of spatial decision problems. The integration of GAs and GIS can help to find

optimal solutions for a variety of geographical problems. This study will

demonstrate that complex spatial search problems involving multiple-objectives

and constraints can be conveniently tackled by using GAs and GIS.

2. Spatial search problems in GIS

2.1 Heuristic search

The search for optimal locations is a classical problem in the GIS domain. GIS has

played a large role in the sitting of facilities for spatial decision making (Church

1999). For example, Openshaw and Steadman (1982) propose an optimal nuclear-

bombing strategy based on population data. The optimal bombing problem involves

defining an optimal set of targets that would cause maximum casualties. Casualty

rules predict deaths from blast effects as a function of distance. The algorithm based

on neighborhood search is given as follows (Openshaw and Openshaw 1997):

Step 1: Define casualty rules as a function of distance.
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Step 2: Perform a 1 km grid mesh search for maximum casualty location.

Find the first optimal target for bomb 1.

Step 3: Reduce population data by removing dead people.

Step 4: Repeat steps 2 and 3 for locating the optimal targets for n bombs

separately.

The casualty rules are created using four concentric rings around ground zone

with radii of 3.96, 6.42, 10.65 and 16.75 km. The population within each distance

ring is computed and the blast death probabilities of 1.0, 0.52, 0.05 and 0.0 are

applied respectively.

The above neighborhood search algorithm does not involve the combinations of

various factors and parameters. Site selection can become very complicated when

the effects of various factors are dealt with simultaneously instead of using each

factor independently. The combination of factors usually cause the maximization

problem to be high dimensional.

The exhaustive blind (brute-force) search of all possible combinations is a

straightforward method for finding the best solution. It does not use information

about the problem to direct the search. In many situations, the method is infeasible

because the amount of computer time needed is extremely large (Openshaw and

Openshaw 1997). Many complex search problems are a combinatorial explosion of

the number of possible solutions that need to be investigated. Even a modern

computer cannot complete the search within an acceptable time.

Heuristic search has been used in geography to find the approximate answer to

difficult problems that cannot be given exact solutions. Usually there are a large,

sometimes extremely large, number of possible solutions that may have to be

examined. A heuristic method can be defined as a trick or rule of thumb that assists

in solving a problem but no guarantee is given (Openshaw and Openshaw 1997). A

spatial optimization problem may involve a very large search space. Heuristic search

is a very important means of solving a broad range of spatial problems.

The algorithms for heuristic search are problem-related because a universal

algorithm is not available. The simplest heuristic search is sequential (Openshaw and

Openshaw 1997). For example, the target numbers can be sorted so that the total

number of comparisons can be reduced. Another way for the heuristic search is to

use the Monte Carlo optimization method. However, Monto Carlo optimization

can get stuck in local suboptima because a move is only made when a better solution

is found. Simulated annealing is a way to solve such problems (Aarts and Korst

1989). A good example of applying simulated annealing in spatial decision making is

to solve high-dimensional and non-linear optimization problems for allocating land

use efficiently (Aerts and Heuvelink 2002). The method is simple and efficient.

Starting from an initial situation with ‘energy level’ f(0), a small perturbation in the

state of the system is brought about. This brings the system into a new state with

energy level f(1). If f(1) is smaller than f(0), then the state change is accepted. If f(1)

is greater than f(0), then the change is accepted with a certain probability. However,

jumping to a higher energy becomes less and less likely towards the end of the

iteration procedure by gradually decreasing the freezing parameter. The whole

procedure is repeated until the satisfied conditions have been reached.

Church (1999) identifies four general classes of location models: median, covering,

capacitated, and competitive. A median model is to locate a fixed number of

facilities under the condition that the average distance from any user to their closest

facility is minimized. Covering models involve locating n facilities to cover all or
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most demand within some desired service distance, such as covering the maximum

population. Capacitated models concern the limit that can be accomplished at each

facility. Competition models allow a competitor to readjust to any location decisions

other competitors have made. A recent development of location models is to

incorporate GIS to provide detailed spatial information. However, the use of more

detailed spatial information from GIS will cause the problem to be computationally

burdensome (Church 1999).

Many applications require the consideration of these four issues to support spatial

decision making. It is only a recent development for the integration of multiple-

facility location models, like p-median and maximal covering (Church 1999). There

is still a need to develop algorithms to solve capacitated facility location problems.

2.2 Genetic algorithms for solving optimization problems

A rapid developing method for solving optimization problems is based on the

evolutionary approach. Genetic algorithms (GAs) have been applied to the solution

of optimization problems in many disciplines (Goldberg 1989). One of the

advantages of GAs is that specific programs are not required for seeking the

optimal solution. This is very useful for dealing with many difficult spatial decision

problems. The optimization procedure is based on the concept of natural selection.

In an optimization problem, each parameter can be considered as a gene, which is

simply represented by a finite sequence of 0’s and 1’s. A trial solution of a set of

genes composes a chromosome. A number of different chromosomes form a

population (individuals). Genes are interchangeable parts between two individuals.

The mechanism of creating a fitter generation is based on the adaptation of

individuals. Fitness functions are used to evaluate the adaptation of each individual

to the environment. Those individuals with higher fitness values are allowed to

reproduce offspring (which can mutate after reproduction) with greater probabil-

ities. As a result, they will breed more offspring. These most fit individuals are called

elite individuals. Generating populations only from two parents may lose the best

chromosome from the last population. Elitism is often used to avoid this problem.

This means that at least one of the generation’s best solutions is copied without any

changes to a new population, so the best solution can survive to the succeeding

generation.

This evolution process is repeated until some conditions are satisfied or the best

solution is found. Generally, after dozens or even hundreds of generations, a good

population eventually emerges. The individuals will solve the problem very well. In

fact, the most fit (elite) individual will be an optimum or close to the optimum

solution.

Genetic algorithms can be used to solve the spatial search problems of enormous

possible combinations in an effective way. GAs are excellent for quickly finding an

approximate global maximum or minimum value. They are bottom-up approaches

which can produce more efficient search procedure compared with top-down

heuristic methods. Moreover, the form of GAs is generally applicable to a variety of

problems. The essence of GAs is to search the optimal solution using the operations

of crossover and mutation.

Brookes (2001) proposes an interesting method to solve a spatial geometry

problem. Genetic algorithm combined with a region-growing program is used to

find the best configuration of patches subject to multiple criteria. A more recent

approach is to use GAs to find a set of contiguous places that meet multiple
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optimization objectives (such as minimizing total cost and maximizing proximity to

certain facilities (Xiao et al., 2002). It assumes that the locations of the facility are

known before the optimization process. For example, planners may need to find a

site for the construction of a residential building subject to the constraint that the

site must be close to a shopping centre (the facility). The area of the contiguous site

is required before running the model. This type of study mainly focused on the

search for optimal shape parameters (for example, size, location, and orientation).

Our study has a different focus in that GAs are used to find the best locations

for a facility under various objectives, such as maximizing population coverage,

minimizing the total transportation cost, and minimizing the proximity to roads

using GIS; population and transportation data will be retrieved for the evolutionary

approach from a GIS database.

3. The methodology

This study uses the evolutionary approach and geographical information for solving

the problem of selecting multiple-sites. Site selection is a common procedure in GIS

applications. The search for the best sites is usually required to minimize

development impacts and raise efficiency in urban planning. The optimization

problem needs to assess various candidate options. Each candidate option refers to a

combination of n sites (targets) for accommodating n facilities (e.g. schools) in the

space of N6N cells. The allocation of each site for the facility is associated with a

certain amount of ‘fitness’ or ‘benefit’. The total amount of ‘fitness’ can be assessed

so that the best combination of sites can be determined.

The search space is extremely large when there are a large number of sites and

available cells. This problem increases exponentially as more and more spatial

details (e.g. population and transportation data) are provided. It is impractical to

use conventional methods to solve the optimization problem which involves large

amounts of spatial data. For example, the simple identification of the best sites for

accommodating 20 facilities in the space of 1006100 cells or possible locations may

involve a total number of 10000!
20!| 10000{20ð Þ! ~4:03|1061 combinations for brute-force

search. Even a modern computer can hardly solve such a ‘simple’ question because

the computation time is enormous. The search becomes further complicated when

multiple-objectives and constraints are considered in the optimization process. The

neighborhood search algorithm cannot be used to solve this type of optimization

problem.

These problems can be tackled using the intelligent approach of GAs. Another

unique feature for this proposed method is to exploit GIS for retrieving detailed

spatial information. This study demonstrates that the optimal spatial allocation of n

facilities can be automatically determined using the evolutionary approach. An

optimal solution should generate the largest fitness (benefit) value. The problem is

similar to the optimal nuclear bombing strategy which attempts to maximize the

death toll for a given number of bombs (Openshaw and Steadman 1982). However,

their strategy only considers the allocation of each bomb independently. The search

algorithm cannot find the optimal solution because the combined effects of all the

bombs are not addressed simultaneously. The proposed GA method has the

advantage in dealing with the combined effects of all parameters together by

properly devising chromosomes. The optimization procedures for allocating the n

facilities (e.g. hospitals) based on the integration of GAs and GIS are shown in

Figure 1.
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3.1 Preparing spatial data from GIS

GIS provide the detailed spatial data for the optimization process. Population data

from the census department of Hong Kong are used to evaluate the fitness

(benefit) of each candidate solution for allocating n facilities under various

objectives. Population density is calculated using GIS functions. The final density

layer will be converted into raster format to facilitate the calculation of fitness

values. The proximity to roads is also calculated based on the transportation data

using GIS.

3.2 Encoding candidate solutions

An important step for implementing GAs is to design chromosomes according to the

problem domain. In this study, the site selection problem is to find out the optimal

{x, y} coordinates for the n facilities within the spatial dimensions of N6N cells. A

chromosome is devised to encode the combination location of n facilities (Figure 2).

The chromosome has 26n genes of which each represents one parameter of these

coordinates. The chromosome (CM) is then expressed as follows:

CM~ x1y1x2y2x3y3 . . . xnyn½ � ð1Þ

where each pair of xi and yi represent the column and row numbers respectively for

the location of a facility.

The program is to find out the optimal locations of the n facilities subject to the

constraints from the GIS. In programming, these numbers are converted into a

binary number of 0 and 1. It is very convenient to implement the crossover and

mutation operations when the chromosome is expressed in the binary format

(Figure 2).

3.3 Defining fitness functions according to planning objectives

The evolutionary process is mainly dependent on fitness functions. The functions

should be used to assess the performance of each solution or individual

(chromosome). It is obvious that fitness functions are crucial to the determination

of the final results. There is no unique way to define fitness functions which should

be related to problem domains. In many resource and environmental management

Figure 1. Integration of genetic algorithms and GIS for optimal location search
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applications, fitness functions can be defined according to various planning

objectives. In this way, planning alternatives can be conveniently generated.

This paper demonstrates that three planning objectives can be used to define

fitness functions. The first two fitness functions correspond to single objective

while the last fitness function corresponds to conflicting objectives. The use of

conflicting objectives is rather common in planning practice. The procedure of

incorporating other planning objectives is achieved by revising fitness functions

appropriately.

Single Objective 1 – maximizing the population coverage. A simple fitness function is

to calculate the total population served by a given n facilities. It is desirable to serve

as much of the population as possible by a given n facilities. This is similar to the

identification of the best targets for dropping n bombs with the objective of

maximizing the death toll. The fitness can be calculated using the following

equation:

F1~
Xn

i~1

Xxiz l{1ð Þ=2

x~xi{ l{1ð Þ=2

Xyiz l{1ð Þ=2

y~yi{ l{1ð Þ=2

P0den x,yð Þ|A0|e{k
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x{xið Þ2z y{yið Þ2

p
ð2Þ

where xi and yi are the coordinates (locations) for the ith site, n is the total sites of

the facility to be allocated, l is the neighborhood window for summing up the total

population served, P9den(x, y) is dynamic population density, A0 is the area of each

cell, e{k
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x{xið Þ2z y{yið Þ2

p
is the density decay function, and k is the coefficient of the

decay function. The serving rate will decline away from a site of the facility. The

dynamic population density is obtained by recalculating population density after a

Figure 2. Operations of crossover and mutation for finding the best locations of facility
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site has been allocated in each try. This can be done by just removing the served

population from the current population.

Single Objective 2 – minimizing the total transportation costs. A number of

additional fitness functions can also be defined based on various objectives. For

example, the optimization problem can be based on the objective of minimizing the

total transportation costs for all the population. The transportation costs are

represented by summing the distance between the facility and each cell, which

should be weighted by the population. This objective targets at minimizing energy

consumption for transportation. Then the fitness function for this objective

becomes:

F2~
Cl

PN

x~1

PN

y~1

dmin x,yð Þ|Pden x,yð Þ|A0

ð3Þ

where dmin x,yð Þ~ min
i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x{xið Þ2z y{yið Þ2

q� �
, Cl is just a scaling constant,

Pden(x, y) is population density, and N6N is the size (the total number of rows

and columns) of the study area.

Multiple Objectives – maximizing the population coverage, minimizing the total
transportation costs and minimizing the proximity to roads. In most situations,

multiple objectives are required to reflect users’ preferences or knowledge in

decision-making. These objectives can be complementary, but often conflicting. This

means that a site can satisfy several objectives at the same time. For example, a site

can be selected for development or conservation. The techniques to solve multiple-

objective problems in GIS have been well developed and documented (Carver 1991,

Jankowski 1995).

Multi-criteria evaluation (MCE) techniques can be used to deal with the problems

of multi-criteria/objectives to support decision-making (Grabaum and Meyer 1998).

Such approaches are often based on linear programming. The technique allows

different objectives in a geographical region to be quantified and takes into account

different weightings of scenarios. Site selection problems using GA can also be
subject to multiple objectives by making multiple constraints for the evolutionary

process. They can be combined into a single objective function using weights

according to MCE techniques (Brookes 2001). Since the evolution process is

controlled by the fitness function, the outcome should be the optimal solution to the

multiple-objective problems.

This study demonstrates that the fitness function can be further devised to solve a

multiple-objective problem in optimal location search. It includes three different

objectives - maximizing the population coverage, minimizing the total transporta-

tion costs and minimizing the proximity to roads. The optimization problem

involving combinations becomes quite complex when these three different objectives

are used. Traditional methods have difficulty in finding the optimal solution. If the

problem is to find a single site or multiple sites sequentially, multiple criterion
evaluation (MCE) methods can be integrated with GIS to tackle the multiple-

objective issue (Carver 1991). However, this method cannot solve the problems

involving the combination of multiple-sites simultaneously, because the brute-force

search for all the combinations is impossible. The incorporation of MCE within GA

is required under this situation. The fitness function in the form of MCE is presented
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as follows:

F3~
X

i

WiXi

~W1XpopzW2XtranszW3Xroad

~W1z
Xn

i~1

Xxiz l{1ð Þ=2

x~xi{ l{1ð Þ=2

Xyiz l{1ð Þ=2

y~yi{ l{1ð Þ=2

P0den x,yð Þ|A0|e{k
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x{xið Þ2z y{yið Þ2

p
z

W2z
Cl

PN

x~1

PN

y~1

dmin x,yð Þ|Pden x,yð Þ|A0

zW3|e{kDroad

~W1|F1zW2|F2zW3|e{kDroad

ð4Þ

where Xpop, Xtrans, Xroad are the variables (criteria) regarding the population
coverage, total transportation costs and the proximity to roads, Droad is the distance

to roads, and W1, W2 and W3 are the weights of the above variables. These weights

are usually decided by planners or experts to represent the priority or preference of

each variable.

The individual scores of variables must be normalized before the calculation due

is the use of different measurement scales. The normalization can allow the weights

of each variable to be chosen properly. The normalization is usually done by scaling

the variable value within the range of [0,1] using its minimum and maximum values.
Since F1>0 and F2>0, the standardized fitness function can be represented as

follows:

F 03~W1|F1=F1maxzW2|F2=F2maxzW3|e{kDroad ð5Þ

Where F1max and F2max are the maximum values of F1 and F2, which cannot be

found by normal procedures. However, they can be found by using the GA program

separately from the solutions to the single objective problems using Equation (2) and

(3). If there is no special preference for the weighting scheme, equal weights can be
applied to the fitness function.

3.4 Creating initial population for the candidate solutions

An initial population is created by just using a random procedure. Each individual is

a candidate solution (a string of coordinates). The population size should be

determined for creating the breeding pool. However, there is no agreement on the

size of the population for optimization procedures. If the size is set too small, there

will not be enough individuals to find the best solution. If the size is too large, a

much longer time is required for solving the problem. Usually, the population size

between 20 and 200 individuals will yield good results. A larger size of population

may be required when the problem is extremely complicated.

3.5 Crossover and mutation operations

There are two basic operations in the evolutionary approach - crossover and

mutation (Figure 2). The GA program has used the binary string of 0, 1 for the easy
operations of crossover and mutation. The conversion of the decimal figures into

binary figures is automatically carried out by the VB program. The ‘crossover’
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operator exchanges genes between two parents to form two offspring that inherit the

traits of both parents. The cutting point for separating the genes is randomly

decided. The ‘mutation’ operator alters one or more genes of a single parent. This

can be done by randomly flipping bits from 0 to 1 or from 1 to 0. The effect of

mutation is to prevent GA from stagnating at local optima or minima. It is expected

that the new population (offspring) based on these two operations will be better

than the old one because of the evolution process.

3.6 Evaluating fitness and reproduction

Each individual (a solution) corresponds to a fitness value. The evolutionary process

is mainly based on the assessment of each individual using the fitness functions. The

natural selection process is biased in favor of those individuals which have higher

fitness values. The fitness functions determine which of the existing individuals are

eliminated and replaced by the offspring of higher fitness from the reproductive

process. The ‘survival of the fittest’ regime is crucial for reaching an optimum or

near-optimum solution. The search process is intelligent because of the use of the

evolutionary approach.

3.6 Next generation

The new generation will go through the same process as their parents until the best

fit can be found in the population. In each generation, the best elite individual is

identified among all the individuals. It is associated with the best fitness value. The

best fitness value will increase with time as better offspring are produced by the

evolutionary process. However, the increase of the best fitness value will be

stabilized after many generations. The search procedure will stop when the

improvement of the best fitness is insignificant. The rules for terminating the

program are:

IF F tz1ð Þ{F tð Þva

THEN The search will be automatically terminated

where a is a small value.

The best elite individual at the latest search is then the final answer to the optimal

allocations of the n sites of the facility. The coordinates for the optimal sites are

given by the chromosome:

CM0~ x0
1y0

1x0
2y0

2x0
3y0

3 . . . x0
ny0

n

� �
ð6Þ

GA is plausible for solving four classical location problems - median, covering,

capacitated, and competitive. The essential is to provide appropriate fitness

functions. For example, the fitness functions in Equations (2) and (3) can guarantee

that the maximum population coverage and the minimum total distance can be

satisfied during the optimization process. Actually, some median models, which are

based on Cooper’s heuristic algorithm (1963 and 1967), cannot yield the optimal

solution for achieving the average minimum distance because of using the median

point. GAs can present much better results for finding optimal points. The

capacitated objective can also be reflected by the density decay function in

the equations. The approach can also allow the utility functions to be inserted in the
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location search by using them as the fitness functions. Moreover, the evolutionary

approach is competition-oriented. This means that the all competitors (candidate

locations) affect each other in the decision process. Moreover, the fitness function in

Equation (5) is used to reflect conflicting or competitive objectives.

The optimization procedure is simple because complicated mathematical

equations are not necessary. The only requirement is to modify the fitness function

according to the problem domain. It has advantages over conventional mathema-

tical methods. It is able to solve a lot of spatial optimization problems, such as

searching for the optimal targets with the highest death toll for bombs, or allocating

the optimal sites for feasible nuclear power plants. Moreover, geographical

information can conveniently be used as inputs to the GA program.

4. Implementation and analysis results

4.1 Study area and data

The study area is located in the urban districts of Hong Kong. The proposed method

is tested by solving an optimal problem which is to allocate n facilities (hospitals)

across the region. This study will compare the effectiveness of using the proposed

GA method, the neighborhood search algorithm, and simulated annealing for

optimal location search.

The optimal allocation of the n facilities is based on the population data and

transportation conditions. GIS was used to create the population layer from the

2001 population data (from the Hong Kong Census Statistics Department). The

population data are available for district blocks. The population density was

calculated for each polygon of the district blocks ARCGIS.

Hong Kong is one of the most densely populated areas in the world. Its land area

is 1,101 km2. The total population is 6.79 million and the average population density

is 6,300 people/km2 in 2002. The average population density in Kwun Tong of

Kowloon is as high as 55,020 people/km2. Figure 3A shows that the distribution of

population is quite uneven in the region. The transportation conditions can be also

prepared in the GIS by calculating the distances to major roads for each site

(Figure 3B).

The population density and proximity to roads were prepared in a raster format

that can be used for the optimization process. ARCGIS was used to produce the

ASCII grid layers which have the cell size of 300 m2 and the dimension of

150 cells6150 cells (22,500 data points). The ASCII grids can be conveniently read

by the program as input to the modeling process.

4.2 Neighborhood search strategy

A neighborhood search algorithm can be designed to obtain the approximate

solution for allocating the n facilities (Openshaw and Openshaw 1997). Each site for

the facility is decided separately. Although the maximum fitness (benefit) value can

be obtained for each site independently, the total fitness value is not maximal

because all the sites are not considered simultaneously. As a result, this

neighborhood search method cannot guarantee that the solution can produce the

maximum population coverage for a given number of facilities. The only advantages

of this method are its simplicity and fast calculation speed, but its effectiveness for

producing optimal results is in doubt for high-dimensional problems.
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4.3 Simulated annealing

Another option is to use simulated annealing for solving the optimization problem

of high dimensions (Aerts and Heuvelink 2002). First, initial locations for n facilities

were randomly generated and the initial fitness value F(0) was calculated. A small

perturbation was added to the coordinates of the initial locations, and a new fitness

value F(1) determined. The acceptance of the change at each iteration was subject

Figure 3. The population density and transportation conditions of the study area in Hong
Kong
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to the following rules by comparing the change of fitness values (Aerts and

Heuvelink 2002):

If F tz1ð Þ > F tð Þ Then

The change is accepted

If F tz1ð ÞvF tð Þ and Exp F tz1ð Þ{F tð Þ=TC tð Þð ÞwRandom 0,1½ � Then

The change is accepted

TC(t) is the freezing parameter which should be gradually deceasing by using a

multiple formula:

TC tz1ð Þ~d TC tð Þ ð7Þ

where 0,d,1. Typical values for the parameter are between 0.80 and 0.98

(Laarhoven 1987). The parameter was set to 0.9 in this experiment.

A parallel calculation was also used in the simulated annealing by using more

than one solution at each iteration. A number of individuals were also randomly

generated for the initial locations. The use of more than one solution can allow the

algorithm to avoid the trapping in local optima.

4.4 GA programming and parameters

In this study, the GA program was developed using Visual Basic to solve the spatial

optimization problem. A commercial genetic algorithm package, GeneHunter

(Ward Systems Group 2004), was used to implement the evolutionary approach.

The package provides the development toolkit that allows a user to utilize all

functions in some common programming languages, such as Visual Basic. The basic

functions of GAs can be called through the DLL (GALIB32.DLL) in a flexible way.

This also allows GIS data to be conveniently incorporated in the optimization

procedure.

In the GA programming, each of the individuals (chromosomes) in a population

is a complete definition of a trial solution (e.g., a site selection plan). The

chromosomes are encoded as a series of genes of which each defines a small part of

the solution, such as a pair of {x, y} coordinates for the ith site in this study. The

coordinates of n sites for allocating the facility are represented by a binary string (a

chromosome). A fixed length bit string is used to represent the solution. For

example, a bit binary string of the length, 8 bit62610 sites5160 bits, is used to

solve the site selection problem of allocating 10 sites of the facility. In this study,

experiments were carried out for optimally allocating 2, 4, 6, 8, 10 and 12 facilities

across the region respectively.

In the evolutionary approach, each individual (chromosome) is evaluated to

determine its ‘‘fitness’’, which decides how likely the individual is to survive and

breed into the next generation. New individuals are created according to the

operations of crossover and mutation. The evaluation functions are inevitably

domain dependent. In this study, three types of fitness functions were used to

address both single-objective and multiple-objectives as described in Equation (2),

(3) and (5).

The GA program requires the determination of a number of parameter values.

Some are related to GAs themselves, and others are related to the fitness functions.
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The first type of parameters includes population size, crossover rate and mutation

rate. Usually, population sizes ranging from 20 to 200 can give a good result. Larger

values of the population size may be used when the length of chromosomes is long.

Experiments were carried out to determine the proper population sizes for the GA

programming. Figure 4 compares the effects of various population sizes based on

the linear weighted fitness function of maximizing population served, minimizing

transportation costs, and minimizing proximity to roads as described in

Equation (5). It is found that the best fitness values will be lower if the population

size is either too small (population size510) or too large (population size5300). The

population size of 200 can yield the highest value of the best fitness. This means that

the population size of 200 is more effective in finding the optimal solution because it

can generate the highest value. The improvement of the best fitness value is

stabilized after 400 generations for all the population sizes.

Usually, crossover is applied with a high probability while mutation is applied

with a very low probability. Higher probability of mutation will reproduce random

populations and will have problems in building up the evolutionary mechanism. In

this study, the crossover rate is set to 0.98 and the mutation rate is set to 0.01. The

scaling constant Cl in Equation (3) is set to 1016 so that the values of the fitness

functions can be scaled to a normal range – not too small and too large.

The parameters for the fitness functions include the neighborhood size (l ) for

summing the population, and the coefficient (k) for the distance decay function as

described in Equation (2) and (4). In Equation (2), the fitness function has been

formulated to count the total population served by n facilities. The population

served can be calculated according to the distance decay function. The serving rate

should be in an exponential decay function. Actually, a buffer window is used to

calculate the total population served for convenience. In this study, the

Figure 4. The relationships between the best standardized fitness value, generation and
population size
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neighborhood size (l ) is set to 15 and the coefficient (k) is set to 0.05. Equal weights

are applied to Equation (5) since no priority is given to any variable.

4.5 Modelling results

Comparison is made by applying the three methods - the neighborhood search

algorithm, the simulated annealing, and the GA programming - to the study area.

The comparison involves three objectives by using the fitness functions as described

in Equation (2), (3) and (5). In the programming, a penalty function is also used

for these three methods to avoid the selected sites falling into unreasonable area (e.g.

sea).

The neighborhood search algorithm is unable to obtain the optimal results for the

three fitness functions. It can only produce the approximate results based on the

methodology. The approximate locations for n facilities can be calculated by using

this strategy. The values for these three fitness functions can still be calculated when

the locations of the facility are obtained.

A better method should be able to produce the highest value of the best fitness -

the largest population served for a given number of facilities. Figure 5 just shows the

allocation results of maximizing the population served by 10 facilities for these three

methods. The neighborhood search method can find the approximate results very

quickly because the algorithm is very simple. However, it cannot produce the

optimal results because each selected site is independent of all others. The result of

the neighborhood search algorithm can be regarded as the baseline for assessing the

effectiveness of the proposed GA method and the simulated annealing. It is obvious

that the proposed GA method has advantages because it is able to generate the

largest value of fitness.

The proposed GA method has more advantages when the fitness function

becomes more complex, such as the fitness functions as described in Equation (3)

and (5). Figures 6 and 7 are the results of allocating 10 sites according to these two

fitness functions respectively. They are to satisfy: 1) minimizing the total

transportation costs; 2) maximizing the population served, minimizing the

transportation costs, and minimizing proximity to roads at the same time. For

the first option, the GA method produces the best fitness value (18.2% larger than

the neighborhood search algorithm and 66.3% larger than the simulated annealing).

For the second option, the GA method also has the best fitness value (30.7% larger

than the neighborhood search algorithm, and 11.1% larger than the simulated

annealing). Therefore, the proposed method can find the solution with much better

fitness values than the other two methods. It is because the evolutionary approach is

better at dealing with complex situations.

Figure 8 compares the improvement of the standardized fitness value with

generations based on the multiple-objectives as described in Equation (5). Much

better performance can be achieved by the GA method because it always has higher

standardized fitness values.

Table 1 also clearly shows that improvement of the proposed GA method over the

neighborhood search algorithm (baseline) for allocating various numbers of the

facility. The proposed GA method has 24–42% improvement of standardized fitness

values over the simple neighborhood search method.

The computation times of these three methods were also compared. Any

optimization process should compare various possible combinations. For the

present problem the brute force search for 12 sites is combinations. The calculation
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Figure 5. Optimal location search based on the fitness function of maximizing served
population using neighborhood search, simulated annealing (SA), and generic algorithms
(GA) (number of facility510)
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Figure 6. Optimal location search based on the fitness function of minimizing transporta-
tion costs using neighborhood search, simulated annealing (SA), and generic algorithms (GA)
(number of facility510)
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Figure 7. Optimal location search based on the standardized fitness function of maximizing
served population, minimizing transportation costs and minimizing the proximity to roads
using neighborhood search, simulated annealing (SA), and generic algorithms (GA) (number
of facility510)
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of the fitness value each time takes about 0.15 seconds for a 1.5 GHz Pentium 4

processor. Therefore, the brute-force search will need 1.4661039 hours to determine

all combinations. The computation time is unacceptable even for a modern

computer. Table 2 lists the computation time for various methods in allocating n

facilities using the same computer. Although the neighborhood search is very quick,

Figure 8. The comparison of the best standardized fitness values between simulated
annealing (SA) and generic algorithms (GA)

Table 1. Comparison of the best fitness values between the GA method and the
neighborhood search (baseline) based on the combined fitness function (F3)

The Best Standardized Fitness Values

2 sites 4 sites 6 sites 8 sites 10 sites 12 sites

Neighborhood search
(Baseline)

0.466 0.423 0.533 0.496 0.485 0.454

GA method 0.765 0.734 0.758 0.652 0.699 0.711
Improvement of the
GA method

39.1% 42.4% 29.7% 24.0% 30.7% 36.1%

Table 2. Computation time for various methods in the optimal location search process
(hours)

Methods

Number of Facility

2 sites 4 sites 6 sites 8 sites 10 sites 12 sites

Neighborho-
od search

0.002 0.004 0.007 0.009 0.011 0.013

Brute-force
(estimated)

3.54e29 2.95e30 9.73e32 1.77e33 1.92e35 1.46e39

Simulated
Annealing

2.3 4.6 6.9 9.1 11.4 13.6

GA method 0.7 1.3 2.0 2.7 3.4 4.0
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it is not an optimization procedure. The simulated annealing can explore various

combinations, but it is not as efficient as the GA method. The computation time

takes about 13.6 hours to allocate 12 sites of the facility whereas the GA method

only takes about 29.4% of that time to finish the search.

5. Conclusion

This study demonstrates that genetic algorithms are capable of producing very

satisfactory results for optimal location search under complex situations. This

method has been tested by solving a spatial search problem which is to allocate a

facility according to the population and transportation constraints derived from a

GIS. The GA algorithm becomes very effective through the use of the mechanics of

natural selection in biology. The proposed method can be used as a planning tool to

solve location search problems under multiple-objectives. Potential applications

may include the optimal sitting of public facilities, such as hospitals, schools, open

space, and fire stations. The model is implemented in continuous space for better

accuracy.

The proposed method has been tested in Hong Kong, a densely populated city.

The study indicates that the proposed GA method can be conveniently integrated

with GIS to retrieve spatial data. These spatial data are used to calculate the fitness

values. The objective is to allocate n facilities (hospitals) across the region by

maximizing a series of fitness (benefit) functions. This problem is impractical for the

brute-force method because the combinations are enormous.

The proposed method is compared with neighborhood search and simulated

annealing. This study demonstrates that neighborhood search method can only

generate approximate results for selection of multiple sites. It can only process the

search under simple assumptions and when multiple-sites and multiple-constraints

are involved, the method cannot guarantee that the search results are optimal.

Simulated annealing can deal with the optimization problems of high dimensions,

but its performance is far below that of the proposed GA method. Much better

performances can be obtained by using the proposed GA method under the same

conditions. Furthermore, computation time of the GA method is only 29.4% of that

of the simulated annealing.

MCE techniques can be incorporated in the GA program to deal with the issues of

multiple-objectives. Optimal location search often requires the considerations of

various planning objectives. These objectives can be combined into a single fitness

function using a linear weighted equation in the GA program. The use of more

objectives results in an increasingly complex search space in which traditional

methods become less appropriate. The experiment indicates that the proposed

method is well adapted to the solution of location search problems subject to

multiple planning objectives. Much better performance can be achieved by applying

the proposed method than either neighborhood search or simulated annealing. This

method can be applied to solving a variety of facility siting problems, such as the

optimal locations of schools, hospitals, power stations, and recreation centres.
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