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simulating urban development in a large complex region
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Rule-based cellular automata (CA) have been increasingly applied to the

simulation of geographical phenomena, such as urban evolution and land-use

changes. However, these models have difficulties and uncertainties in soliciting

transition rules for a large complex region. This paper presents an extended

cellular automaton in which transition rules are represented by using case-based

reasoning (CBR) techniques. The common k-NN algorithm of CBR has been

modified to incorporate the location factor to reflect the spatial variation of

transition rules. Multi-temporal remote-sensing images are used to obtain the

adaptation knowledge in the temporal dimension. This model has been applied to

the simulation of urban development in the Pearl River Delta which has a

hierarchy of cities. Comparison indicates that this model can produce more

plausible results than rule-based CA in simulating this large complex region in

1988–2002.

Keywords: Cellular automata; Case-based reasoning; GIS; Dynamic transition

rules

1. Introduction

Cellular automata (CA) were first proposed by Ulam and Von Neumann to

investigate the logical nature of self-reproducible systems in the 1940s (White and
Engelen 1993). They were primarily used to solve computation problems in the

design of digital computers in the early days. However, they were soon applied to

the simulation of either physical or artificial complex systems in many disciplines,

such as lattice gases and propagation phenomena in physics, and crystal growth in

chemistry (Wolfram 1984, Binder 1989, Goles 1989). There is a growing body of

research of using CA to simulate and predict complex geographical phenomena.

Many interesting studies have been documented in the simulation of residential

development (Deadman et al. 1993), spatial dynamics of animals’ population
(Couclelis 1985, 1988), wildfire propagation (Clarke et al. 1994), changes of desert

landscape (Jenerette and Wu 2001), forest evolution (Favier and Dubois 2004),

landscape dynamics (Soares et al. 2002), evolution of ecological systems (Wu and

David 2002), urban expansion (Batty and Xie 1994, Wu and Webster 1998, Clarke

et al. 1997), and land-use changes (White et al. 1997, Li and Yeh 2002).

CA are discrete models in the spatio-temporal dimension that can be easily

implemented in computer programs. These models can be conveniently incorporated
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into GIS when the raster programming environment is provided. For example, CA

can be implemented by using the AML language of a GIS package, ARC/INFO

(Wu and Webster 1998, Li and Yeh 2000). CA have become a powerful tool for

simulating many geographical phenomena in which global patterns can be generated

by just using some local rules. This ‘bottom-up’ approach has more advantages than

the traditional ‘top-down’ approach which is based on strict mathematical equations

(White and Engelen 1993, Batty and Xie 1994).

It is flexible and transparent to set up CA for simulating geographical

phenomena. CA are usually implemented through a sequence of processes which

are bounded by transition rules. These rules can be heuristically defined according to

the intuitive understanding of the process of geographical phenomena. Various

types of transition rules have been proposed according to experts’ preferences and

knowledge (Batty and Xie 1994, Clarke et al. 1997, Wu and Webster 1998). For

example, transition rules can be represented by using weight matrices (White and

Engelen 1993), the SLEUTH model (slope, landuse, exclusion, urban extent,

transportation and hillshade) (Clarke and Gaydos 1998), multicriterion evaluation

(MCE) (Wu and Webster 1998), logistic regression (Wu 2002), and neural networks

(Li and Yeh 2002).

There is no agreement on how to define model structures and parameter values of

CA. Transition rules are usually provided in a quite relaxed way. However, it is

more useful to generate realistic patterns by elaborately providing transition rules.

The outcomes of CA are very sensitive to transition rules and their parameter values

(Wu and Webster 1998, Li and Yeh 2002, Wu 2002). Some calibration procedures

are especially useful when CA are applied to the simulation of real cities. Fine tuning

of transition rules requires considerable effort, which is greatly dependent on

calibration techniques and available data. A number of methods have been

proposed to calibrate CA. Trial and error is a useful way to calibrate CA (Clarke et

al. 1997, Wu and Webster 1998). A simple procedure is to use visual testing to

establish parameter ranges and make rough estimates of the values of the

parameters for transition rules.

Calibration of this type of dynamic spatial model is not a trivial problem

(Straatman et al. 2004). More elaborate methods have been proposed with regard to

different model structures of CA. For example, self-modification techniques have

been used to calibrate the SLEUTH-CA (Clarke et al. 1997, Clarke and Gaydos

1998, Silva and Clarke 2002). In the SLEUTH model, diffusion, breed, spread,

slope, and road coefficients control growth behaviour. The calibration allows the

model to ‘‘learn’’ its local setting over time. This learning is quantified by the

variation during calibration of the five control parameters (Silva and Clarke 2002).

Wu (2002) provides a method to estimate the global development probability by

using a logistic regression model. The initial global probability is calibrated

according to historical land-use data. It seems to be easy to understand the

coefficients in the logistic regression equation. However, the regression model

assumes that spatial variables should be independent of each other.

The calibration of CA can also be implemented by using a neural network (Li and

Yeh 2002). This can solve the problem of uncertainties in defining parameters.

Moreover, neural networks are able to deal with complex interactions among

variables. Variables are not required to be independent of each other.

The rule induction procedure using data mining has been proposed for

reconstructing explicit transition rules automatically (Li and Yeh 2004a). Remote

1110 X. Li and X. Liu
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sensing and GIS provide the basic information for the mining procedure. This

procedure can minimize the uncertainties and time consumed in defining and testing

transition rules because they are automatically reconstructed by machine-learning.

The benefits of this method include faster speed of rule base construction,

convenient calibration, and transparent rule structures.

CA can also be calibrated to find a set of weights such that the highest potential

for each cell and its neighbourhood corresponds to the desired state for that cell

(Straatman et al. 2004). The coupling of a neighbourhood and its desired cell is

established by a series of maps of the past. Some automatic search methods, such as

the width search, are used to find possible improvements for reducing total error.

The iterative procedure is applied for deriving the optimal weights when a minimum

of two high-quality land-use maps are available.

Although the above calibration methods are useful, concrete knowledge about the

application domain must be available for extracting explicit transition rules. The

rule-based techniques assume that knowledge is well bounded and can be clearly

expressed. However, there are difficulties in soliciting rules which deal with

complicated elements and relations (Watson 1997). The constructing of rule bases is

very time-consuming because a large set of rules is usually required for solving a real

application (McAvoy and Krakowski 1989, Li and Yeh 2004c).

Most of the existing methods assume that transition rules are invariant in the

spatio-temporal dimension. The same set of transition rules will be applied to any

location and time, regardless of the possible changes to the simulation environment.

In reality, the relationships between the state conversion and its geographical

variables may be complex for real geographical phenomena. There are difficulties in

providing invariant rules to describe the relationships which may vary significantly

in the spatio-temporal dimension. It is unreasonable to use the same set of rules

when a study area is large, and the simulation period is long. The use of ‘fixed’ rules

will produce poor simulation results for a large region consisting of a hierarchy of

cities. This is because each of these cities may experience a different growth stage

associated with a unique growth pattern (Li and Yeh 2004b). The transition rules

should be further relaxed to accommodate the variations in control factors and

parameter values so that better simulation results can be produced.

Case-based reasoning (CBR) techniques can help to solve these difficult

knowledge solicitation problems in implementing CA. CBR can be traced back to

the work of Roger Schank and his students at Yale University in the early 1980s

(Kolodner 1993, Watson 1997). It is developed to overcome the problems of rule-

based systems (KBS) but has the advantages inherited from KBS, such as artificial

intelligence, reduction of repetitive tasks, and highly automated capability. It can

save much of the time in applications because eliciting rules from past experiences

are not required. The case-based reasoning (CBR) approach has more appealing

features than the traditional rule-based approach. CBR can also allow users to find

the solutions in domains that are not completely understood by them (Watson

1997). Moreover, CBR can well handle the domains where problems have many

exceptions to rules (Holt and Benwell 1999).

Recently, CBR has been used to solve the problems in environmental sciences,

urban planning, and geography (Branting and Hastings 1994, Lekkas et al. 1994,

Yeh and Shi 1999). For example, CBR methods are used to classify soil types (Holt

and Benwell 1999) and predict air pollution (Lekkas et al. 1994). CBR can also be a

useful tool for urban planning and management (Yeh and Shi 1999).

Simulating urban development in a large complex region 1111
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This paper presents a new method to establish CA using case-based reasoning

(CBR) techniques. The use of discrete cases can provide a powerful tool to capture

the complexities exhibited in many geographical phenomena which may have

exceptions, irregularities, and variations. The advantages of CBR should allow case-

based CA to have much better potential for self-learning and adaptation than

traditional rule-based CA. Moreover, this paper presents an improved k-NN

algorithm to capture the spatial variations of transition rules so that the proposed

CA can have a better performance.

2. Methodology

2.1 Rule-based cellular automata

In traditional CA, transition rules are used to determine the state conversion of each

cell at time t. Strict transition rules have been relaxed for simulating complex

geographical phenomena by using various forms of neighbourhood functions. For

example, the probability of land-use conversion can be expressed as a function of a

series of spatial variables (Wu and Webster 1998):

P ið Þ~
XN

l~1

wlal ið Þ ð1Þ

where P(i) is the probability of land-use conversion (e.g. from agricultural land use

to urban land use) at location i, al(i) is the lth site attribute (dependent variable) at

location i, wl is the weight for the site attribute, and N is the total number of

variables.

It is essential to determine the weight for each variable. A common method to

determine these weights is based on the multicriteria evaluation (MCE) techniques

(Wu and Webster 1998). However, this MCE-CA may have uncertainties, since its

weights are determined according to experts’ knowledge. A modified version is to

employ logistic regression to calibrate CA by using empirical data (Wu 2002):

P ið Þ~ exp z ið Þð Þ
1zexp z ið Þð Þ~

1

1zexp {z ið Þð Þ ð2Þ

where z ið Þ~w0zw1a1 ið Þzw2a2 ið Þz � � �zwNaN ið Þ.
More methods have been proposed to extract appropriate CA transition rules,

including computer exhaustive searches (Clarke and Gaydos 1998), neural networks

(Li and Yeh 2002), and data mining (Li and Yeh 2004a). Complex global patterns

can be generated by using various types of transition rules. However, these strict

transition rules or equations may have problems in representing complex relation-

ships between the probability of state conversion and its independent variables.

Standard CA use ‘fixed’ rules in the spatio-temporal dimension for simulating

complex systems. The relationships are independent of locations and time, since the

parameter values will not change during simulation. The strict transition rules may

have difficulties in representing realistic spatio-temporal processes in geography,

which are often more complex than those in other disciplines. The simulation of

geographical processes will encounter at least the following problems:

N Neighbourhood influences are very complex with various kinds of distance

decay functions. The calibration is difficult because of involving a huge

combination of parameters.

1112 X. Li and X. Liu
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N There are hidden and external factors which are beyond human knowledge.

N Environmental factors or constraints are rapidly changing under accelerating

economic growth and environmental degradation.

N A region to be simulated is usually very complex and may consist of a

hierarchy of cities with various growth patterns and processes.

Standard CA are based on ‘fixed’ neighbourhood windows for representing

transition rules. A larger window size may be preferable for reflecting complex

relationships, but calibration of such models is very difficult. Moreover, explicit

transition rules may have difficulties in capturing complex relationships which have

exceptions and irregularities. These exceptions and irregularities usually come from

the unexplained variables that cannot be covered by these rules. Therefore, the rule-

based approach has difficulties in balancing the trade-off between neighbourhood

window sizes and complexities for simulating geographical phenomena. It may

create significant discrepancy between the simulated and the actual patterns,

especially when the study area is large, and the simulation period is long. Extended

cellular automata should be useful for dealing with these problems by relaxing

transition rules.

2.2 Extended cellular automata using case-based reasoning

The use of case-based reasoning (CBR) techniques can avoid knowledge-soliciting

problems in CA simulation. A CBR system for solving geographical problems

usually consists of: (1) construction of case library using geographical data; (2) case

matching; (3) problem solving; and (4) verification and adaptation according to

training data (figure 1). Cases are the basic units for reasoning process in a CBR

system. Case-based learning is often termed ‘lazy learning’, as there is typically no

‘transformation’ of training cases into more general ‘statements’ or rules. Instead,

the presented training data are simply stored, and when a new queried case is

encountered, a set of similar, related cases are retrieved from memory and used to

provide solutions to the new queried case.

Figure 1. CBR system for solving geographical problems.

Simulating urban development in a large complex region 1113
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In a case library, each case is represented by a description of the problem, plus a

solution and/or the outcome. The knowledge for solving a problem is not recorded

but is implicit among the cases. Similar cases will be matched and retrieved in the

case library to solve a current problem. The retrieved cases are used to suggest a

possible solution which can be reused and tested, or even adapted to a current

problem. This can allow users to formulate solutions to problems quickly and avoid

the time necessary to derive those answers from scratch. CBR can also allow users to

find the solutions in domains that are not completely understood by them (Watson

1997). CBR can easily handle the domains where problems have many exceptions to

rules (Holt and Benwell 1999).

Discrete cases can be conveniently obtained to represent spatio-temporal

variations of transition rules for CA. Figure 2 shows the methodology of using

case-based reasoning for establishing CA. Detailed procedures are provided in the

following sections.

2.2.1 Establishing case library. The first step of this proposed method is to

establish the case library which will replace explicit transition functions or rules for

traditional CA. A case is a contextualized piece of knowledge representing an

experience that can help a reasoner to achieve his goals (Kolodner 1993). In this

proposed urban CA, each case is represented by two parts: (1) attributes (features)

of each cell; (2) state conversion (solution). The first part includes proximity

(distance) variables and land-use types. The second part is the solution, which

determines if the state will be converted or not (e.g. urbanized or not).

Figure 2. Case-based approach for cellular automata.

1114 X. Li and X. Liu
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A case can then be represented as follows:

I~ a1 ið Þ,a2 ið Þ, � � � ,aN ið Þ; sð Þ ð3Þ

where a1 ið Þ,a2 ið Þ, � � � ,aN ið Þ are the attributes (features) of case i in terms of a series of

spatial variables—proximity variables and existing land-use types. s is a Boolean

variable in which the urbanized is 1, and the non-urbanized is 0. N is the total

number of features (variables).

Empirical data from remote sensing and GIS will be used to establish the case

library. First, multi-temporal satellite images will be acquired and classified so that

the data about land use and land-use conversion (state conversion) are obtained for

each cell. Second, GIS analyses will be carried out to calculate the site attributes of

each cell. They include the proximity variables—from a location to a series of

‘attraction’ centres (e.g. city centres, town centres, roads, expressways, and

railways). A closer distance to these centres will have a higher probability of land-

use conversion (Wu and Webster 1998). Stratified randomly sampling methods (Li

and Yeh 2002) can then be employed to retrieve only a portion of original data as

the cases.

2.2.2 Improved k-NN algorithm for reflecting spatio-temporal dynamics. The case

library stores the experience (knowledge) that can determine if the state of a cell will

be converted in the simulation. Case matching should be carried out to retrieve the

experience for making the decision. The matching is usually based on the similarity

between an input (questioned) case (i) and a known case (j) of the samples in the case

library. The similarity can be calculated by using the following Euclidean distance

function:

d i, jð Þ~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
XN

l~1

al ið Þ{al jð Þð Þ2
vuut , ð4Þ

where al(i) is the lth feature of a case.

Two cases will be more similar if they have a closer Euclidean distance in the

feature space. The similarity is calculated according to a number of features, which

can be treated equally for their importance. In some situations, the importance of

each feature may be different in the calculation. Weights can be assigned to address

the contribution of each feature in calculating the similarity. The above equation is

then revised as follows:

d i, jð Þ~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
XN

l~1

w2
l al ið Þ{al jð Þð Þ2

vuut ð5Þ

where wl is the weight for the lth feature.

In this study, the weights are determined by an entropy method, since there is no

prior knowledge. First, the variables are standardized into the range of [0, 1]. The

entropy is used to represent the content of information (Theil 1967, Thomas 1981).

It can be calculated as follows:

Hn~
Xn

i~1

pilog 1=pið Þ=log nð Þ ð6Þ

Simulating urban development in a large complex region 1115
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where pi~a ið Þ
�Pn

i~1

a ið Þ, and n is the total number of observation.

The entropy falls within the range of [0, 1]. The smallest value of 0 represents the

maximum amount of the information exhibited in the variable. The largest value of

1 indicates the minimum amount of the information. Therefore, the amount of the

information is directly proportional to this form: 12Hn.

A feature that has a larger amount of information is expected to have a larger

weight. Then, the entropy weight for the lth feature can be represented as follows:

wl~
1{Hnl

n{
Pn

i~1

Hnl

ð7Þ

The entropy weights can then be integrated with the initial (subjective) weights to

produce the integrated weights (Xu 2004). These final adjusted (integrated) weights

can be computed as follows:

wl~w0
l
:wl

,
XN

i~1

w0
i
:wi ð8Þ

where w0
l is the initial weight defined by experts, and wl is the final adjusted weight

for the lth feature.

The reasoning first locates the queried case i to its nearest known case j in the

library. The known case has a target function of f(j) (e.g. indicating converted or

not). The reasoning assumes that the case closest to j tends to have a target function

close to f(j). Actually, the matching is often carried out by comparing the queried

case with a number of known cases, its k-nearest neighbours. This is the most

popular k-nearest-neighbour (k-NN) algorithm, which works well on many practical

problems and is fairly noise-tolerant in CBR applications (Dasarathy 1991).

Intuitively, the k-NN algorithm assigns to each new queried case the majority

class (state) among its k nearest neighbours. For a discrete value of f(j), it can be

estimated by using the following expression (Dasarathy 1991, Houben et al. 1995):

f̂ ið Þ/ arg max
s[S

Xk

j~1

d s, f jð Þð Þ
d s, f jð Þð Þ~1, if s~f jð Þ
d s, f jð Þð Þ~0, if s=f jð Þ

�
ð9Þ

where k is the total number of the nearest neighbours, and s is the finite set of target

class value. In this study, it represents the state of a cell (e.g. 1 for urbanized and 0

for non-urbanized).

It is possible that the use of different k values may have different enquiry results.

For example, the queried case is classified as A by using five nearest neighbours, but

as B by using 10 nearest neighbours (figure 3). The appropriate value of k is

considered to be problem-dependent (Houben et al. 1995). Experiments can be

carried out to find out the appropriate value for an application.

The above equation assumes that each neighbour has the same vote in

determining the target class value (state). However, it is reasonable that a closer

neighbour should have more influences than others in making the decision. A

distance-weighted function can be used to treat these neighbours differently. The

contribution of each neighbour is decided according to its distance to the queried

1116 X. Li and X. Liu
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case. Equation (9) is then revised by adding the weights to the inference equation

(Jia and Richards 2005):

f̂ ið Þ/ arg max
s[S

Xk

j~1

wfj
:d s, f jð Þð Þ ð10Þ

These feature-distance weights (wfj) are proportional to the inversed distance

function:

wfj~
1

d i, jð Þ2
ð11Þ

where f̂ ið Þ~f jð Þ if d i, jð Þ~0.

The above k-NN algorithm only deals with the proximity influences in the feature

space. The distance-weighted function, which is calculated in the feature space, cannot

reflect the spatial variations of transition rules of CA. It is obvious that the influence

of a case may not be the same at different spatial locations in the reasoning process.

The location information should be included as a part of the attribute for a case. This

Figure 3. Impacts of k values on reasoning results—classified as A using five neighbours,
but as B using 10 neighbours.

Simulating urban development in a large complex region 1117
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can be done by adding the coordinates of a case as additional attributes in

equation (3).

Therefore, the distance-weighted function should have two parts: (1) feature-

distance-weighted; and (2) spatial-distance-weighted. The later element is essential in

dealing with spatial variations of transition rules. The spatial-distance weights (wsj)

can be defined to count the proximity influences related to case locations in original

space. wsj is written as follows:

wsj~
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

xi{xj

� �2
z yi{yj

� �2
q ð12Þ

where x and y are the coordinates of a case.

Finally, equation (10) is revised as follows:

f̂ ið Þ/ arg max
s[S

Xk

j~j

wfjwsj
:d s, f jð Þð Þ ð13Þ

or

f̂ ið Þ/ arg max
s[S

Xk

j~1

Wj
:d s, f jð Þð Þ ð14Þ

where Wj5wfjwsj

This method adopts a slightly different approach to address the neighbourhood

influences of CA by using the modified k-NN algorithm. The neighbourhood

window is the most basic element of CA. Standard CA usually adopt ‘fixed’

neighbourhood windows to represent transition rules (White and Engelen 1993).

However, this proposed method has only the ‘fixed’ neighbours, but its

neighbourhood window varies in size in either the original space or the feature

space. The modified k-NN algorithm uses fixed k nearest neighbours to represent

the transition rules of CA. The neighbourhood influences are quite complex, since

these neighbours are determined in both the original and feature spaces. General

calibration procedures for rule-based CA are not suitable for addressing these

complex neighbourhood influences. The lazy-learning techniques from CBR have

advantages in soliciting inexplicit transition rules for CA. The simplicity of CA can

still be maintained by using these convenient techniques.

2.2.3 Estimating development probability using case-based reasoning. The state

conversion of a cell can be determined according to its k-nearest neighbours by using

CBR. However, this can only yield a Boolean value—converted or not. The

conversion probability is often used to produce more plausible simulation results (Wu

2002). In an urban CA, there are two states—1 (urbanized) and 0 (non-urbanized).

The conversion probability can thus be estimated by using the following equation

Pproximity ið Þ~

Pk

j~1

Wj
:d 1, f jð Þð Þ

Pk

j~1

Wj
:d 1, f jð Þð Þz

Pk

j~1

Wj
:d 0, f jð Þð Þ

ð15Þ

where Pproximity(i) is the development probability for cell i.

1118 X. Li and X. Liu
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There are other factors that play roles in determining the conversion probability.

The amount of urbanized cells in the neighbourhood can significantly influence

urban development. For example, more developed cells in the neighbourhood will

increase conversion probability (Batty and Xie 1994). The conversion probability

related to the neighbourhood function is as follows:

Pneigh ið Þ~k
X

V

N ið Þ ð16Þ

where N(i)51 for urbanized cells and N(i)50 for others; k is a scaling coefficient.

The final conversion probability is the joint of these two probabilities, plus some

constraint factors (e.g. topography and land use) which are used to adjust the

conversion probability. For example, it is unlikely that urban development takes

place at the locations with steep slopes and at the locations of water. The final

probability is presented by using the following equation:

P(i)~Pproximity(i)|Pneigh(i)| 1{
X

c

dc(i)

 !

~k

Pk

j~1

Wj
:d(1, f (j))

Pk

j~1

Wj
:d(1, f (j))z

Pk

j~1

Wj
:d(0, f (j))

|
X

V

N(i)| 1{
X

c

dc(i)

 ! ð17Þ

where dc(i) is the cth constraint factor with the range of [0, 1]. A larger value of dc(i)

indicates a higher degree of constraint influence for the factor.

Urban dynamics has manifested some degree of uncertainties, which cannot be

reflected by using deterministic models (White and Engelen 1993, Batty and Xie

1994). Stochastic CA can reproduce some complex features of urban systems by

properly adding perturbation in urban simulation (White and Engelen 1993). These

models are usually implemented by using the Monte Carlo method. In this study,

the final land-use conversion is determined by comparing the development

probability with a random variable (Wu and Webster 1998):

Stz1 ið Þ~
Converted, P ið Þ > Rand()

Non� converted, Others

�
ð18Þ

where Rand() is a random variable ranging from 0 to 1.

The initial case library is produced at the beginning of the simulation by using t1

and t2 satellite images. The case library provides the knowledge for determining

land-use conversion in the simulation. The library can be updated by using the same

procedure if additional t3 and t4 satellite images are available for reflecting the

possible changes of relationship. New cases are obtained from these remote-sensing

data and stored in the case library. This is useful for reflecting the possible changes

to the simulation environment. The dynamic transition rules in the temporal

dimension can then be easily implemented by using this updated library.

There are questions if this type of case-based models still belongs to CA, which

assume the use of ‘fixed’ transition rules. One may argue that the same rules should

be applied to anywhere and anytime for standard CA. However, the assumption is

still valid for this extended CA under the case-based framework by using the same k-

NN algorithm instead of the same rules. This can provide more flexibility of using
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CA to simulate complex geographical phenomena. Actually, the strict transition

rules of traditional CA have already been relaxed when they are applied to the

simulation of urban systems by using various model structures (White and Engelen

1993, Batty and Xie 1994, Clarke and Gaydos 1998, Li and Yeh 2002, Wu 2002).

The case-based approach is another way to relax transition rules so that the spatio-

temporal complexity exhibited in geographical phenomena can be appropriately

addressed.

3. Implementation and results

3.1 Study area and data

The proposed model is applied to the simulation of fast urban expansion in the Pearl

River Delta which has an area of about 41 157 km2 (figure 4). It has led the nation in

economic growth and urbanization with unprecedented land-use changes since the

economic reform in 1978. Fast urban expansion has triggered the loss of a large

amount of agricultural land in this region (Li and Yeh 1998).

Instead of a single city, this simulation involves a hierarchy of cities which have

different scales of population and economic development (figure 4). Internal

variations of land-use change patterns and development processes can be identified

in this agglomeration region (Li and Yeh 2004b). Traditional CA which are based

on static transition rules may have difficulties in simulating urban development in

this large area because of its inhomogeneous geographical features.

In this study, the initial training data about land-use conversion were obtained by

the classification of the 1988 and 1993 TM images. The classification accuracy will

definitely affect the simulation accuracy. The accuracy assessment for land-use

classification was carried out with reference to available land-use maps, air

photographs, and field investigation. The total accuracy is 0.87, and the kappa

coefficient is 0.83 according to the accuracy assessment (Li and Yeh 2004b).

The independent variables (e.g. proximity to centres) for determining land-use

conversion were retrieved by using GIS functions. Stratified random sampling

(Congalton 1991) was then employed to construct the case library which consists of

two major groups of cases—urbanized and non-urbanized. A total of 4000 cases

were obtained for representing the complex relationships between land-use

conversion and its independent variables.

The case library was updated to reflect the possible change in relationships by

using additional satellite images, the 1995 and 1997 TM images. Studies have

indicated that the land-development patterns of the study area have changed

significantly in different periods because of the variations in economic growth and

land-use policies (Li and Yeh 2004b).

The weight for each feature in calculating the similarity was determined by using

the entropy method in equation (8). These weights will vary during simulation when

the case library has been updated. There are only very limited studies on the retrieval

of the adaptation knowledge of CA so that future land-use changes can be more

reasonably forecast from the past trends. For example, self-modification rules have

been obtained by the SLEUTH model (Clarke et al. 1997). The fluctuation of global

constraints can also be obtained by using data-mining techniques (Li and Yeh

2004a). However, CBR is more straightforward and convenient for acquiring

adaptation knowledge through the learning from case libraries (Kolodner 1993,

Wilke and Bergmann 1998).
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3.2 Simulation results

In this study, the k-NN algorithm is modified by using spatial-distance weights. This

is useful for capturing spatial variations of urban dynamics and formulating

dynamic transition rules of CA. Moreover, the transitional rules are not frozen in

the temporal dimension by using multi-temporal satellite images to update the case

library. New cases are collected from additional satellite images in 1995 and 1997.

These new cases can be used to reflect the new relationships between land-use

conversion and its independent variables. Transition rules, which are represented by

cases, can thus become dynamic in the temporal dimension by updating the case

library. This case-based method can thus provide a more flexible approach to

capture complex relationships for urban simulation.

This CA is mainly implemented by using the modified k-NN algorithm. The first

step was to determine the proper k value for the simulation. Experiments were

carried out to test the influences of various k values on the classification results. Two

Figure 4. Simulation of urban expansion in a large region—the Pearl River Delta.
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hundred cases from the case library were used to examine the relationships. The

experiments indicate that the increase in k values can improve the classification

accuracy but significantly increase the computation time. Figure 5 is the relationship

between the number of k and prediction accuracy based on the training data. The

accuracies are 69.1% (k51), 73.2% (k510), and 73.4% (k520), respectively. It is

obvious that the accuracy improvement becomes stabilized after k is greater than 10.

Therefore, 10 neighbours are used to avoid too much computation time in the

simulation.

It is necessary for the simulated and actual land-use patterns to have the same

amount of land-use conversion. The actual amount of land-use conversion can be

obtained by classification of remote-sensing data. The amounts of future land-use

conversion can also be estimated based on the growth trends. One way to capture

the growth trend is to use more than two 2 of satellite images (Li and Yeh 2004a).

These extra remote-sensing data can be used to provide aggregated information

about the development trajectory for simulating future urban development.

There are many iterations of simulation before the outcome is obtained. A shorter

interval between t and t + 1 means that a larger number of iterations are required.

The relationship between the number of iterations (K), the iteration interval (Dt) and

the observation interval (DT) between two satellite images is as follows (Li and Yeh

2004a):

K~DT=Dt ð19Þ

where DT is the observation interval for the two remote-sensing images, Dt is the

iteration interval between t and t + 1, and K is the number of iterations.

Land consumption at each period DQt is obtained from remote-sensing data. It is

possible to estimate the amount of land-use conversion between t and t + 1. The

amount is calculated using the following equation:

Dqt~DQt=K ð20Þ

where DQt is the amount of land-use conversion for the observation interval, and

Dqt is the amount of land-use conversion for the iteration interval.

The final land-use conversion is usually determined by comparing the develop-

ment probability with a random variable (Batty and Xie 1994, Wu and Webster

1998, Wu 2002). The random variable may introduce the ‘noise’ in the simulation

process by reflecting the uncertainties of urban development.

Figure 5. Relationship between the number of k and prediction accuracy.

1122 X. Li and X. Liu



D
ow

nloaded By: [U
niversity of C

incinnati] At: 15:26 22 January 2007 

In this study, the land-use conversion is determined using the following rules:

Stz1 ið Þ~
Converted, P ið ÞwRand() and Rand()vDqtÞ
Non� converted, Others

�
ð21Þ

where Rand() is a random variable with the range of [0, 1].

This case-based CA was used to simulate the urban expansion of the whole Pearl

River Delta in 1988–2002. The urban land use at the initial stage was classified from

the 1988 TM image. The actual urban land use in 1993 and 2002, which was used as

the reference data for calibration and verification, was also classified from the TM

images of these two years. Figure 6 shows a comparison of the actual and simulated

patterns of urban development in the Pearl River Delta in 1988, 1993, and 2002.
There are inhomogeneous growth patterns in this large study area which has a

hierarchy of cities. A uniform set of transition rules has difficulties in simulating the

whole complex region simultaneously for traditional rule-based CA. However, the

experiment indicates that the proposed case-based CA can generate very plausible

simulation results by using a single case library. Consistent simulation results are

obtained, although the growth patterns vary significantly between different cities.

For example, various growth patterns can be effectively simulated in the cities of

Shenzhen (figure 7), Dongguan (figure 8), Guangzhou (figure 9), and Zhengchen
(figure 10) using this model. A visual comparison can reveal that the simulated and

actual growth patterns are very close at a local level.

3.3 Model validation

Validation of urban CA is required when they are applied to the simulation of real

cities. It is preferable for a model to produce a high goodness of fit. It is impossible

to reproduce the exact patterns of land use because of the existence of unexplained

variables. A simple method to assess the goodness of fit is to compare the simulated

patterns with the actual patterns visually. Figures 6–10 compare these two patterns

of urban development for the whole region and several selected cities. A visual

comparison can provide a rough estimation of the accuracy of this proposed model

in simulating urban development.
A further quantitative analysis is to produce a confusion matrix about the

concordance between the simulated and the actual development patterns. It is based

on the spatial overlay of these two patterns cell by cell. Table 1 compares these two

patterns in 1993 and 2002. The total accuracies are 0.86 and 0.82, and the kappa

coefficients are 0.53 and 0.51 for the simulation of urban development in 1993 and

2002, respectively. The simulation in 1993 has a better accuracy because it uses the

cases closer in time.

The cell-by-cell comparison has difficulties in providing the morphology
information about land-use patterns. Urban studies are usually concerned about

the morphological and structural features of urban land use, such as connectivity,

fractals, and compactness. A convenient way to measure these features is based on

several aggregated indicators, such as compactness indices (Yeh and Li 2001a),

fractal dimensions (White and Engelen 1993), and Moran’s I (Wu 2002).

In this study, the simple indicator of Moran’s I is applied to the measurement of

land-use patterns. It is quite easy to calculate Moran’s I values in a GIS package,

ARC/INFO GRID. Moran I is a useful spatial indicator that can reveal the degree
of spatial autocorrelation (Goodchild 1986). The indicator is able to estimate how

close the simulated land-use pattern is to the actual pattern (Wu 2002). The
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Figure 6. Actual and simulated patterns or urban development in the Pearl River Delta in
1988, 1993, and 2002.
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Figure 7. Actual and simulated patterns or urban development in Shenzhen in 1988, 1993,
and 2002.
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maximum value is one which indicates the absolute concentration of a land-use type.

A smaller value, which can be below zero, indicates a more even distribution of the

land-use type.

The analysis indicates that the simulated patterns are very close to the actual

patterns based on the Moran I indicator. The Moran I values are 0.376 and 0.382 for

the actual and simulated patterns in 1993, respectively. They become 0.385 and

0.393 for the actual and simulated patterns in 2002, respectively.

Figure 8. Actual and simulated patterns or urban development in Dongguan in 1988, 1993,
and 2002.
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Figure 9. Actual and simulated patterns or urban development in Guangzhou in 1988, 1993,
and 2002.
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Figure 10. Actual and simulated patterns or urban development in Zengcheng in 1988,
1993, and 2002.
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Another experiment is to compare the performances of this proposed model with

those of traditional rule-based CA. A common logistic rule-based CA (Wu 2002)

was applied to the simulation of urban development in the study area as the

comparison. This simulation utilizes static transition rules in which the parameter of

each variable is calibrated using a logistic regression. Table 2 shows the simulation

accuracies of this logistic rule-based CA. The total accuracy is 0.81 and 0.75, and the

kappa coefficients are 0.34 and 0.28 for the simulation of urban development in

1993 and 2002, respectively. It has much lower accuracies than the proposed model

because the ‘fixed’ rules are used.

Table 1. Simulation accuracies of the case-based CA for the Pearl River Delta.

1988,1993 (cells)

AccuracySimulated 1993 non-urban
Simulated 1993

urban

Actual 1993
non-urban

476 678 58 315 0.89

Actual 1993 urban 31 953 71 454 0.69
Total accuracy 0.86
Kappa coefficient 0.53

1993,2002 (cells)

AccuracySimulated 2002 non-urban
Simulated 2002

urban

Actual 2002
non-urban

432 997 65 273 0.87

Actual 2002 urban 48 513 91 616 0.65
Total accuracy 0.82
Kappa coefficient 0.51

Table 2. Simulation accuracies of the logistic rule-based CA for the Pearl River Delta.

1988,1993 (cells)

AccuracySimulated 1993 non-urban
Simulated 1993

urban

Actual 1993
non-urban

461 699 73 294 0.86

Actual 1993 urban 50 462 52 944 0.51
Total accuracy 0.81
Kappa coefficient 0.34

1993,2002 (cells)

AccuracySimulated 2002 non-urban
Simulated 2002

urban

Actual 2002
non-urban

416 056 82 214 0.84

Actual 2002 urban 76 651 63 478 0.45
Total accuracy 0.75
Kappa coefficient 0.28
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The rule-based CA also has a poorer performance according to the aggregated

indicator. The Moran I values are 0.376 and 0.489 for the actual and simulated

patterns in 1993, respectively. They become 0.385 and 0.526 for the actual and

simulated patterns in 2002. The differences are larger than those of the proposed

model.

There are many successful examples of using standard rule-based CA for

simulating complex urban systems (White et al. 1997, Clarke and Gaydos 1998).

Satisfactory results in terms of simulation accuracies have been obtained for these

studies. However, most of these studies mainly focus on the simulation of a single

city or a portion of a city using ‘fixed’ rules. For example, White et al. (1997) use a

rule-based CA to simulate the central area of a small city, Cincinnati in Ohio. The

kappa coefficient is 0.69. Wu (2002) has applied the logistic-CA to simulate the

dynamics of urbanized and non-urbanized land use in the Tianhe District, a

suburban district of Guangzhou. The simulation has an overall accuracy of

0.72,0.79. However, it has an area of only 304 km2, which is much smaller than that

of our study area. Ward et al. (2000) use a constrained rule-based CA to simulate the

residential development of a single satellite city in the Gold Coast of eastern

Australia. The model performs reasonably well with agreement between

the simulated and actual growth of 63%. Silva and Clarke (2002) also utilize the

SLEUTH urban growth model to simulate two metropolitan areas separately, the

Lisbon Metropolitan Area (312 km2) and the Porto Metropolitan Area (817 km2). In

both case studies, the model accurately reflects the evolution of urbanization in both

metropolitan areas (a score of 0.90 for Lisbon and 0.97 for Porto).

Our experiments indicate that the case-based CA has much better simulation

performances than the rule-based CA for this complex region. The poor

performance of using rule-based CA is due to the complexities exhibited in this

large region. It has an area of about 41 157 km2, consisting of a hierarchy of fast-

growing cities, such as Shenzhen, Dongguan, Guangzhou, and Zhengchen. It is

inappropriate to use the same set of rules to simulate these cities simultaneously, as

they have quite different growth patterns and processes (Li and Yeh 2004b).

Moreover, many chaotic patterns have been witnessed in this fast-growing region

(Yeh and Li 2001b). It is difficult for standard CA to obtain good simulation results

under these complex situations. The case-based reasoning is more suitable for

capturing unexplained variables and revealing complex relationships in this large

area.

Another issue related to the simulation accuracy is the error propagation for

source data. There are classification errors when remote-sensing data are used to

obtain the empirical information about land-use changes. Additionally, a large

amount of GIS data are usually required as the main inputs to these urban models.

There are many possibilities of creating errors in spatial data because these errors

can come from source maps and even map digitizing. New errors can also be

generated in GIS operations. All these errors will propagate through CA simulation

and have an impact on the results. Most of these errors are difficult to assess because

of unavailable source information. Moreover, error propagation is a fairly complex

process for these nonlinear dynamic models.

Studies indicate that errors inherited from the source data can propagate through

CA simulation, but the errors are much reduced in the simulation because of the

averaging effects of neighbourhood functions and the use of iterations in CA (Yeh

and Li 2006). It is also found that there are spatial patterns for the uncertainties
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related to data errors. In this study, most of the simulated patterns have good

conformity with the actual patterns (figures 6–10). Experiments indicate that the

areas of disagreement are mainly situated in the peripheries of urban areas (Yeh and

Li 2006). This fact can also be observed in the above figures. Many more studies are

still required to address the error propagation in urban simulation when a variety of

spatial data are involved.

Recently, Pontius and Malanson (2005) suggested that a predictive model should

be compared with a null model of pure persistence (no change) for model validation.

The baseline is that a predictive model should have better performances than a null

model. For example, the typical amount of change on the landscape was about 10%

in many situations, so a null model of pure persistence would be 90% correct based

on the standard overall accuracy. However, this overall accuracy has a bias because

of the difference between the actual agreement and chance agreement (Congalton

1991). This accuracy is extremely popular and frequently misinterpreted (Pontius

and Malanson 2005). The Kappa coefficient can be used to avoid this problem.

Table 3 lists the accuracies of the null model of pure persistence for the Pearl River

Delta. The total accuracies have problems related to distinction of the performances

of these models. However, the Kappa coefficient indicates that the proposed CBR-

CA has a much better performance.

Figure 11 further shows the spatial distribution of agreement and disagreement of

the simulated patterns of urban development in the major part of Guangzhou in

1993 and 2002. The first three classes are predicted correctly, whereas the last three

classes are errors, by the proposed simulation model. The null model of pure

persistence (no change) would correctly predict the first two classes and the green

class, but would wrongly predict the others.

4. Conclusion

The essential part of geographical cellular automata (CA) is to provide appropriate

transition rules so that realistic patterns can be simulated. Transition rules can be

Table 3. Accuracies of the null model of pure persistence for the Pearl River Delta.

1988,1993 (cells)

Accuracy1988 non-urban (no change)
1988 urban (no

change)

Actual 1993
non-urban

522 010 12 984 0.98

Actual 1993 urban 72 424 30 982 0.30
Total accuracy 0.87
Kappa coefficient 0.36

1993,2002 (cells)

Accuracy1988 non-urban (no change)
1988 urban (no

change)

Actual 2002
non-urban

484 379 14 152 0.97

Actual 2002 urban 109 448 30 451 0.22
Total accuracy 0.81
Kappa coefficient 0.25
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Figure 11. Distribution of agreement and disagreement of the simulated patterns or urban
development in the major part of Guangzhou in 1993 and 2002.
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defined by a variety of methods, such as multicriteria evaluation (MCE), logistic

regression, neural networks, and data mining. CA usually assume that transition

rules are constant in the spatio-temporal dimension. However, the uniform

transition rules may not be suitable for simulating complex geographical

phenomena (e.g. the evolution of urban systems) at a large regional scale. The

validity of CA is affected by some unexplained variables because of nature’s

complexities. Static transition rules cannot capture the influences of these

unexplained variables and thus reflect complex relationships. Discrete cases are

more adapted to representing dynamic transition rules and are more suitable for the

simulation of a large area and a long period.

The solicitation of concrete knowledge (transition rules) is often difficult for many

applications. There are problems in representing complex relationships by using

detailed rules. This study demonstrates that the case-based approach can avoid the

problems of the rule-based approach in defining CA. The proposed method is based

on the case-based reasoning techniques, which do not require the procedure of

soliciting explicit transition rules. The knowledge for determining the state

conversion of CA is inexplicitly embedded in discrete cases. The lazy-learning

technology can be used to represent complex relationships more effectively than

detailed equations or explicit transition rules.

In this study, the common k-NN algorithm has been modified to incorporate the

location factor in the reasoning process. Spatial-distance weights are defined to

reflect spatially dynamic transition rules. The dynamic characteristics in the

temporal dimension are also obtained by updating the case library with remote-

sensing data. The use of CBR can help CA more adapted to the simulation of

complex cities with possible changes to simulation environment, such as population,

economy, land-use policy and resources

The proposed model has been applied to the simulation of urban development in

the whole Pearl River Delta in 1988–2002. This large area consists of a hierarchy of

cities, among which there are significant variations in population, economic growth,

urbanization, and land-use patterns. However, the case-based CA can produce very

plausible simulation results for this large region. The consistency between the actual

and simulated patterns is verified by using classified remote-sensing data.

Satisfactory results can be achieved not only at a regional level but also at a city

level.

The model validation is carried out by using the indicators of cell-by-cell overlay

and Moran I. A standard rule-based CA is also used as a comparison. The

experiment indicates that the case-based CA has better simulation performances

than the rule-based model for this large complex region.

Mining the trajectory of future from the past is still a difficult problem for any

forecasting models. Some studies have been carried out to address this issue by using

the methods of self-modification (Clarke et al. 1997) and data-mining techniques (Li

and Yeh 2004a). However, CBR has been well recognized for its adaptation

potential through the learning from case libraries (Kolodner 1993, Wilke and

Bergmann 1998). This learning capability is useful for tackling the complexities in

urban simulation.
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