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An agent-based model for optimal land allocation (AgentLA) with a
contiguity constraint

Yimin Chen, Xia Li*, Xiaoping Liu and Yilun Liu

School of Geography and Planning, Sun Yat-sen University, Guangzhou, People’s Republic of China

(Received 26 June 2009; final version received 18 September 2009)

Spatial optimization is complex because it usually involves numerous spatial factors and
constraints. The optimization becomes more challenging if a large set of spatial data with
fine resolutions are used. This article presents an agent-based model for optimal land
allocation (AgentLA) by maximizing the total amount of land-use suitability and the
compactness of patterns. The essence of the optimization is based on the collective efforts
of agents for formulating the optimal patterns. A local and global search strategy is
proposed to inform the agents to select the sites properly. Three sets of hypothetical data
were first used to verify the optimization effects. AgentLA was then applied to the
solution of the actual land allocation optimization problems in Panyu city in the Pearl
River Delta. The study has demonstrated that the proposed method has better perfor-
mance than the simulated annealing method for solving complex spatial optimization
problems. Experiments also indicate that the proposed model can produce patterns that
are very close to the global optimums.

Keywords: agents; land allocation; spatial optimization; contiguity

1. Introduction

Massive conversion of agricultural land use into urban land use in rapid growing countries
has caused a series of environmental problems, such as soil erosion, floods, and deprivation
of future land supply (Li and Liu 2008). There is an urgent need for the development of
planning tools for alleviating land-use conflicts in these regions under multiobjectives.
Land-use planning is a process of allocating different activities to specific units within a
region. Land allocation relates to not only what to do but also where to do it (Stewart et al.
2004). It is regarded as a complex planning problem because of involving both site attributes
(e.g., suitability, cost, and environmental impacts) and aggregation attributes (e.g., shape,
contiguity, and so on) (Cova and Church 2000). The complexities and difficulties of
searching for a solution will enormously increase if a region is very large and a fine
resolution of data is used (Stewart et al. 2004). In most situations, space is modeled under
a raster framework, on which the suitability of the given land use is mapped. Suitability maps
serve as a crucial aid for solving land-use planning problems. However, when the objective
is to locate a region rather than individual cells, it is insufficient with mere suitability maps
for the optimization (Brookes 1997). A fragmented pattern will be produced without
incorporating other constraints in the optimization (Yeh and Li 1998). Thus, extra heuristics
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for searching feasible alternatives are required for satisfying shape constraints such as
compactness.

Techniques that deal with this sort of problems are used to adopt a centralized approach
(Matheya et al. 2008). For example, Yeh and Li (1998) proposed a sustainable land development
model using geographic information system (GIS) to balance present land consumption and the
stock of land for future urban growth. However, these approaches cannot handle too much spatial
complexity (Matheya et al. 2008). Efforts have been made to solve these difficult planning
problems. For instance, Eastman et al. (1995) described a method to allocate land use in a raster
environment involving conflicting objectives. The limitation of this method is the lack of
compactness constraint. Inspired by the region growing techniques in image processing (Sonka
et al. 1993), Brookes (1997) proposed a site allocation method, which was further developed by
incorporating a genetic algorithm (Brookes 2001). However, thismethodmainly optimizes a patch
rather than a pattern. Xiao et al. (2002) also used the evolutionary algorithm to tackle patch
optimization problems. In this method, each solution (a site) has a fixed size, for example, 10 cells,
and then the shape and location ‘mutates’ over the time dimension, subject to several constraints.
Stewart et al. (2004) employed the genetic algorithms to optimize land-use planning alternatives,
but the experiments were only implemented in 20 · 20 and 40 · 40 grids. Ligmann-Zielinska
et al. (2005) developed the sustainable multiobjective land-use allocation (SMOLA) model and
further enhanced it with hop-skip-jump (HSJ) method (Brill et al. 1982). Santé-Riveira et al.
(2008) extended the simulated annealing (SA) as a land allocation optimization method that was
implemented in a large area. This method requires very intensive computation, although it can
produce better optimization results than other conventional methods.

Multiagent systems (MASs), as well as cellular automata (CA), belong to the range of
simulation approaches. They have been applied to spatial process modeling, urban process
modeling in particular (Torrens and Benenson 2005), such as urban growth (Clarke and
Gaydos 1998), land-use changes (White et al. 1997, Li and Yeh 2002), fractal urban forms
(White and Engelen 1993, 1994), and urban settlement patterns (Bura et al. 1996, Sanders
et al. 1997). Compared to CA,MAS has the advantages of directlymodeling the behaviors and
interactions among individual decision-makers (Parunak et al. 2006). Benenson (1998)
proposed an MAS model to simulate urban residential dynamics. An entity-based approach
was used to study residential segregation of Yaffo, Tel Aviv (Benenson et al. 2002). As stated
by Li and Liu (2007), CA models have difficulty in reflecting complex interactions between
individuals and the environment; therefore, they proposed amodel integrating CA andMAS to
simulate the residential development of Guangzhou, China. Besides the simulation of resi-
dential dynamics, MAS is also preferable for the simulation of land-use changes. For example,
Manson (2005, 2006) employed MAS to explore the land-use changes in Southern Yucatan,
Mexico. Xie et al. (2007) developed an agent-based model to simulate ‘Deskota’ in China.
There are other applications for land use/cover change (LUCC) simulation usingMAS (Parker
et al. 2003).

There are few reports on the use ofMAS for optimizing land allocation.Ward et al. (2003)
integrated an optimization model into CA to simulate and evaluate two converse planning
scenarios. The role CA plays in their study is to spatially realize the optimization amount of
new development derived from the optimization model. Similarly, Li and Liu (2008) use
sustainable development strategies to determine the respective quantity of land for growth in
each period, leaving the job of spatial allocation to an integration model of CA and
MAS. These two applications emphasize more on optimizing the amount of given land use
by projecting from other factors, such as population, and constraints of shape are also absent.

Actually, optimal land allocation with a contiguity constraint is not a new problem. Aerts
et al. (2003) have tried to use linear programming (LP) to solve the joint cost-compactness
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optimization of land allocation. As one typical deterministic optimization technique, LP can
ensure the optimal solution, but the computation time is far beyond acceptable when it is applied
to real data. Thus, the resolution of spatial data has to be restrictively coarse. As reported byAerts
et al. (2003) in their research, themethod is not feasible to be implemented in an area that is larger
than 30 · 30 cells. However, real applications usually involve the use of spatial datamuch larger
than 30 · 30 cells, and coarsening the data will inevitably lose the details of spatial information.

This study develops an agent-based optimization model for solving land allocation
problems. A simple set of behavioral rules is proposed for the formulation of the optimal
land allocation pattern that maximizes both land-use suitability and compactness. Although
SMOLA is quite advanced on the subject of land allocation optimization, this model mainly
optimizes land-use patterns by using the factors of compatibility and proximity but compact-
ness is loosely involved (Ligmann-Zielinska et al. 2008). This proposed agent-based model
(AgentLA) is to produce optimal land allocation patterns by including the compactness
factor as one important objective. Moreover, the outcomes of many optimization models are
not always the global optimums or close to the global optimums because of the complexities.
The objective of this study was to generate patterns that are very close to the global
optimums according to the collective efforts of agents. The proposed model is first validated
by using two sets of artificial data (with pre-known optimal patterns). A further comparison
to LPmodel is performed using a small subset of land-use suitability map. Finally, this model
is used to generate land allocation alternatives of conservation area in Panyu, a rapid
growing region in the Pearl River Delta, China.

2. The multiagent model for optimization

In conventional MAS models, agents are considered as movable individual entities like
households (Benenson 1998), developers (Li and Liu 2007), or pedestrians (Dijkstra and
Timmermans 2002). In this study, an agent is used to identify a single unit of the given land
use to be allocated. Figure 1 depicts the methodologies of AgentLA. Initially, a population of
agents are generated with random positions. The population size of agents is equal to the
given amount of land use to be located. Each step of the simulation consists of two tasks: the
decision for the allocation of each agent and the assessment of the simulated pattern. Each
agent will use a fitness function to assess a potential site for relocation. An agent will move to
a better location based on the assessment of the site. After all agents have made their
decisions, the whole simulated pattern will be evaluated through an overall fitness function
involving suitability and compactness factors. Such iterations will continue until the
improvement of the fitness function gets stable.

Before a further specification of the model, the meanings of some important notions
(Figure 2) are listed below for better understanding:

l A cluster is a group of spatially connected agents of the same type;
l An isolated agent refers to a cluster that is made up by only one agent;
l A boundary agentmeans that it has less than four neighboring agents of the same type

in its von Neumann neighborhood; and
l Nonboundary agents represent the agents inside a cluster.

2.1. Definition of agents’ behavior with multiobjectives

A fitness function is defined to measure whether a position is worth occupying by an agent.
The objective is to maximize both land-use suitability and compactness of the pattern created
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Figure 1. Optimization procedure of AgentLA.

Figure 2. Cluster, boundary agent, nonboundary agent, and isolated agent.
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by the simulation. This involves two spatial variables: the land-use suitability value and the
spatial efficiency. The fitness function is thus formulated by using a linear combination of
these two variables as follows:

f ¼ wvvþ wcc (1)

where v is the land-use suitability value, c is the spatial efficiency, and wv and wc are their
weights, respectively (wv þ wc ¼ 1).

This expression is quite straightforward and easy to implement for agent-based model-
ing. An agent takes into account both land-use suitability and spatial efficiency when
evaluating a position for allocation. The former variable requires a suitability map that can
be conveniently prepared by using GIS. The latter encourages agents to attach with each
other and become a cluster. Specifically, this variable can be expressed through the following
equation:

c ¼
P

i2� xi exp �di=�gð ÞP
i2� exp �di=�gð Þ (2)

where xi is a binary variable which equals to 1 if cell i is occupied and to 0 otherwise. �
represents the Moore neighborhood of the central agent. di is the Euclidean distance from
cell i to focal agent. g is a compensation parameter that ranges from 1 to 10. The specification
of c is favorable to fasten the formation of agent cluster, and the modeling bias created by
rectangular neighborhood can be eliminated as well, because of the introduction of the
distance variable di.

The relationship among agents is cooperation instead of competition. In the optimiza-
tion, agents help each other to assemble an optimized pattern rather than competing with
each other for satisfying their individual objective. This mechanism is similar to those of
swarm optimization, such as particle swarm optimization and ant colony optimization. For
example, ant intelligence has been applied to the solution of a lot of spatial optimization
problems (Li et al. 2009a, b). The cooperation between these agents is crucial for finding the
optimal solution.

In this proposed model, each agent is used to identify one unit area for a specific land-use
type. The objective is to allocate each agent to a place that is worth occupying. There are no
conflicts such as several agents contesting for the same place. It is because there are enough
locations for accommodating these agents. These agents just need to cover all positions that
are meant to be occupied, but regardless of who occupies a place first.

The cooperation among agents is achieved according to a spatial search strategy. The
search for a position is based on local information and global information. First, we define
the neighborhood of an agent as its local searching range. Agents search and evaluate all
vacant positions within their neighborhood to look for the best position. However, this
strategy of using only local information may have some problems. If there is more than one
peak in the entire region, agents are likely to get trapped in some locally high fitness
positions after several iterations. As illustrated by Figure 3a and b, the area enclosed by
the white line is of high suitability value, but not as high as the brightest area roughly
bounded by the green line. Assuming agents are distributed randomly at the beginning
(Figure 3a), only if they search for a better position according to local information, the
pattern may finally evolve into the one shown in Figure 3b – one cluster in the highest
suitability area, whereas the other gets stuck in the less bright area, although apparently there
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are plenty of better positions within, which is encircled by the green line. Therefore, a proper
amount of global information is required. This is the so-called cooperation strategy.

Stated by Tobler’s first law of geography, near things are more related than distant
things (Tobler 1970). Empirically, the distribution of land-use suitability in most actual
cases obeys this law. Inspired by this concept, an effective local and global search strategy
is adopted to inform the agents to move properly: Randomly select a boundary agent from
the population, and then identify the vacant position of the highest fitness value within this
boundary agent’s neighborhood. As an example, Figure 3 assumes that there are 12 agents,
and their initial positions are randomly chosen. The brightest area in the southeast part of
the region has the highest suitability value, enclosed by a green line. The area within the
white line is darker but brighter than the narrow corridor diagonally across the region. The
predicted optimal pattern should be a single cluster formed by all 12 agents and should be
located in the brightest area. However, if agents only perform the local neighborhood
search, the modeling outcome is likely to be two separated clusters that are far from the
expected optimum (Figure 3b).

The local and global search strategy can help avoid the trapping to a local optimum.
Suppose the selected agent (shown in yellow in Figure 3c) is in search of a better position for
relocation. First, the agent looks for vacant position of the highest fitness value within its
local Moore neighborhood, denoted as PosL (Figure 3c, the grid with a label ‘L’). Then,
another boundary agent is randomly chosen globally (the one in blue in Figure 3c). The best

Figure 3. Formulation of agent clusters.
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vacant position within the Moore neighborhood of this global boundary agent will be
identified, denoted as PosG (Figure 3c, the grid with a label ‘G’). PosL and PosG are
compared, and the better one becomes the target position for potential relocation. If the
target position has a higher fitness value than the current position, the migration probability
P is computed by using the following equation:

P ¼ exp �ð Þ
exp �maxð Þ (3)

where � represents the difference of fitness value between the target position and the current
position and �max ¼ 1.

A random value r is generated as a pointer: if r is greater than P, then it will migrate to the
target position (Figure 3d); otherwise, the agent will stay at its current position:

r>P; move
r � P; stay

�
(4)

The outcomes of this model should be very sensitive to the specification of
weights wv and wc. Theoretically, when wv is set to 0, the simulation is only based
on the criterion of spatial efficiency. As a result, the pattern is likely to evolve from
initially dispersed distribution to eventually a compact one. Under this circumstance,
agents’ decisions are independent of the suitability value, and consequently the loca-
tion of the resulted cluster is completely uncertain. On the contrary, when wv is set to
1.0, it means that agents only take into account the suitability value. Then, the most
suitable positions in terms of the suitability will ultimately be occupied by these
agents. These positions are fixed once the suitability map is given. Therefore, no
matter how many times the model is operated, the outcome will be the same. Thus,
when the weight wv moves from 0 to 1.0, the randomness of the outcome reduces and
vice versa.

Another effect brought about by shifting the value of wv is rather straightforward.
Generally in real circumstance, it is hardly possible to draw a pattern that covers the most
suitable area as well as maintaining the most compact shape at the same time. The spatial
characteristics of the simulation outcomes may differ significantly according to various
configurations of the weights wv and wc. When wv is extremely low, the resulting pattern will
show the greatest compactness regardless of the suitability value. Conversely, if wv is set
exceedingly high, the resulting pattern will be most scattered. Apparently, such an extreme
scenario is not the best alternative. The optimized patterns cannot be obtained unless an
appropriate configuration of weights that best compromises suitability value and spatial
efficiency is determined.

2.2. Evaluating the simulated pattern

The final simulated pattern will be evaluated through an F function. Because there are two
main objectives to achieve, that is, conserving the most suitable positions while keeping the
spatial efficiency, this function is defined as follows:

F ¼ SV� SL (5)
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SV ¼
Xn
i¼1

vi
VMaxSum

(6)

SL ¼ LSum � LMinSum

LMaxSum � LMinSum
(7)

where n is the size of population, VMaxSum is the sum of the suitability value of the most
suitable cells, and

Pn
i¼1 vi is the total suitability value of the selected cells currently

occupied by agents. SV is the ratio of
Pn

i¼1 vi to VMaxSum, measuring how well the objective
of site attribute is achieved.

SL is used to measure the dispersion of the simulated pattern. It is common sense that
once the area is known, the most compact form would be circular and its perimeter is
shortest. The minimum sum of perimeter (LMinSum) can then be calculated when the area of
planning land use is known. On the contrary, if agents separate from each other, the
maximum sum of perimeter LMaxSum will be obtained. LSum represents the sum of perimeter
of the current pattern. In short, the wellness of the resulted pattern increases when SV is
higher and SL is smaller.

3. Model implementation and results

AgentLA is developed by using Java and RePast 3.0, an open source toolkit for agent-based
modeling. (A free version of AgentLA for academic use can be downloaded at http://
www.geosimulation.cn/AgentLA/.) This model is first tested by applying it to three sets of
hypothetical data because they allow easy identification of the optimization effects. The
results are shown and discussed in Section 3.1. Thereafter, the model is implemented in
Panyu, one of the fastest developing regions in the Pearl River Delta, China, for creating the
conservation area for natural vegetation protection.

3.1. Identification of the effects for hypothetical data

The preliminary test of the proposed model is divided into two parts. First, the model is
examined by using two hypothetical data, that is, suitability layers with monocentric and
polycentric distributions, respectively. In these two experiments, the size of the agent
population is set to 800 and the local search window is 7 · 7. The data size of suitability
layers is 200 · 200 in a raster format (Figure 4). Test data-set 1 has a monocentric form in
the suitability map. It has the highest suitability value in the central part, generated by an
exponentially decline function (Figure 4a). The suitability map was created using the
following function:

St ¼ 100 ·Exp �dcð Þ (8)

where St is the suitability value in test data-set 1 and dc is the normalized distance to the
center.

Test data-set 2 has a polycentric form in the suitability map that consists of a larger area
of the highest suitability value in the center and four smaller ones of the highest suitability
values near the corners (Figure 4b). The central part of the highest suitability is designed to
have enough area for the land allocation so that the optimization effect can be easily
identified. Therefore, the optimal pattern is expected to form just in the central part for
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these two data-sets. The experiments will examine whether the proposed model can generate
such a pattern after sufficient iterations of simulation.

Figure 5 shows the optimization results of test data-sets 1 and 2. It is found that agents
rapidly assemble into a single cluster only after 50 iterations of simulation. Although the
simulated pattern does not fit the central part perfectly as predicted, it becomes almost the
same as the known optimal after several hundreds of iterations. Test data-set 2 is a little more
complicated, of which the central part has the highest suitability value, whereas another four
minor ‘hills’ exist near the corners. This distribution can help to examine whether the
proposed model will stop at a local optimum. In this experiment, some agents did locate
in the areas of less high suitability value in the early several iterations, but then the pattern
evolves very quickly, and almost all agents congregate at the center after 15 iterations.
Eventually, the pattern stabilizes after 50 iterations. F values of these two final outcomes are
both very close to 1.0, indicating a significant approach to the optimal pattern (Table 1).
These two data-sets seem quite simplified. The advantage is that the optimal patterns are
known for convenient verification of the proposed model. To illustrate the spatial consis-
tency, the simulation results are overlapped with the known optimal patterns; and roughly
96% of areas in both simulation results are shared with the optimal patterns.

Figure 4. Test data-sets for verifying AgentLA.
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The second experiment is to compare the optimization results between the proposed
model and LP model developed by Aerts et al. (2003), using a small subset of real suitability
map, namely 10 · 10 (Figure 6a).

As one typical deterministic optimization technique, LP can ensure the optimal solution,
although it can only be used for a small data-set. Thus, the validity of the proposedmodel can

Figure 5. Optimization results using test data-sets 1 and 2.

Figure 6. Comparison of optimization results between AgentLA and LP.

Table 1. F value of the optimized patterns in Figure 5.

Test data-set 1 Test data-set 2

t = 10 0.7346 t = 5 0.3194
t = 20 0.9243 t = 10 0.8114
t = 50 0.9823 t = 15 0.9187
t = 420 0.9891 t = 50 0.9889
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be further confirmed by comparing the optimization result to the one produced by LP model.
The region is restricted to only 100 cells because LP model is not efficient and feasible to
solve land allocation optimization problems for large areas (Aerts et al. 2003). As described
by Aerts et al. (2003), given an area which is divided into N · M cells and K different land
uses, xijk equals 1 if land use k is assigned to cell (i, j) and equals 0 otherwise. Sijk represents
the suitability value of cell (i, j) for land use k and Tk is the total amount of cells to be
allocated as land use k. The variable yijk measures the similarity to land-use type k in the
neighborhood of cell (i, j). The overall objective is to maximize total suitability value and
compactness, subject to a set of constraints:

Maximize:

w1

XK
k¼1

XN
i¼1

XM
j¼1

Sijkxijk þ w2

XK
k¼1

XN
i¼1

XM
j¼1

yijk (9)

where:

bijk ¼ xi�1jk þ xiþ1jk þ xij�1k þ xijþ1k (10)

yijk ¼ bijkxijk (11)

subject to:

XK
k¼1

xijk ¼ 1 xijk 2 f0; 1g (12)

XN
i¼1

XM
j¼1

xijk ¼ Tk (13)

yijk � 4xijk (14)

yijk � xi�1jk þ xiþ1jk þ xij�1k þ xijþ1k (15)

yijk � xi�1jk þ xiþ1jk þ xij�1k þ xijþ1k � 4ð1� xijkÞ (16)

yijk � 0 (17)

"k ¼ 1; . . . ;K; i ¼ 1; . . . ;N ; j ¼ 1; . . . ;M (18)

The comparison of the optimization results between AgentLA and LP is illustrated in
Figure 6b and c. Although the size of the subset data is much smaller, the distribution of the
suitability values is much complicated. The LP model developed by Aerts et al. (2003)
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concerns suitability values and compactness, as the proposed model does. Moreover, LP
guarantees the outcome is a true optimum. As shown in Figure 6, the optimized results of
these two models are quite consistent (only with a slight difference). This has clearly
confirmed the validity of AgentLA if some degree of approximation is allowed.

3.2. Application in the pearl river delta

Panyu city in the Pearl River Delta has been selected for the experiment of land allocation
optimization (Figure 7). A series of land-use problems driven by rapid urban development
and land speculation in this region have been reported in many studies (Yeh and Li 1997, Li
and Yeh 2000). Seto et al. (2002) estimated that, between the period 1988 and 1996, urban
land use increased more than 300%, and approximately a quarter of new urban areas
originated from natural vegetation and water. A great amount of natural vegetation in
Panyu has been encroached by urban land use, causing a series of environmental problems.
There is an urgent demand for conserving the natural vegetation to sustain the environmental
quality and more importantly, the ecological functions for human welfare and further
development, such as food supply, sources of materials, waste treatment, space for receiving
economic activities, and so on (Costanza et al. 1997). In this application, the model
described above is used for producing optimal conservation area for natural vegetation
protection. The entire process is divided into two steps: (1) suitability mapping constrained
by a set of criteria, using spatial analysis functions of GIS; and (2) various scenarios with
different model configurations are generated and compared with each other to determine the
most satisfactory results.

Figure 7. Location of Panyu in the Pearl River Delta.
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Pointed out by Malczewski (2004) in a review on GIS-based land-use suitability
analysis, the term ‘land-use suitability analysis’ can be extended into a broader sense that
includes site search problems. However, in this study, the land-use suitability analysis
(mapping) is referred in particular to quantification of different units (e.g., a pixel/cell) in
the study area suiting the given activity, that is, conservation for natural vegetation.

A raster GIS provides the spatial data for producing the land-use suitability map (Figure 8).
These spatial data include the normalized difference vegetation index (NDVI) value, three
proximity variables (distance to towns, distance to highways, and distance to roads), slope, and
focal density of urban cells. A 30-mdigital elevationmodel (DEM) file is used to produce the slope
of the region. The focal density of urban cells is calculated by using the neighborhood of 7 · 7.
Finally, the resolution of all these data is downgraded to 100 m (76,516 cells in total). The value
ranges of these spatial variables are normalized into 0–1 for calculating the land-use suitabilitymap.

NDVI has been widely used for researches relevant to vegetation, such as vegetation
abundance estimation (Hurcom and Harrison 1998), vegetation succession (Zhao et al.
2009), and gross primary production estimation (Wu et al. 2009). In this study, the NDVI
value, denoted as Svegetation, is used to detect which land units deserve conservation. The
potential of future development should also be considered because environmental

Figure 8. Spatial data for mapping land suitability using raster GIS.
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conservation should not totally deny future economic development. Therefore, the devel-
opment potential, denoted as Sdev, is estimated using the following equation:

Sdev ¼ whð1� dhÞ þ wrð1� drÞ þ wtð1� dtÞ � wll þ wrr (19)

where dh, dr, and dt respectively represent normalized distance to highways, roads, and
towns; l is the slope and r is the focal density of urban land in a 7 · 7 neighborhood; wh, wr,
wt, wl, and wr are the weights and are subject to wh þ wr þ wt þ wl þ wr ¼ 1

Finally, the suitability value of conservation for each cell is calculated by the following
equation:

S ¼ Svegetation � Sdev (20)

Figure 9 illustrates the suitability map (wh ¼ 0:25 wr ¼ 0:25 wt ¼ 0:2 wl ¼ 0:1, and
wr ¼ 0:2) and the optimization results by using 2000 agents with wv varied from 0 to 1. In

Figure 9. Optimization results using different wv values.
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this simulation, when wv is less than 0.3, the outcomes all exhibit a pattern of great
compactness (only one cluster). When the value of wv rises, for example, 0.4–0.8, the
suitability value becomes more important for the simulation. Hence, the compactness of
the pattern reduces, but a larger amount of total suitability value is obtained. When wv is set
closer to 1.0, the simulated pattern becomes more fragmented because the importance of
suitability value is dominant over spatial efficiency in the fitness function. The F values of
these patterns are computed by using Equation (5), and a histogram is set up in Figure 10. It
shows that the F value becomes the highest when wv falls between 0.5 and 0.8.

As mentioned in Section 2.1, the randomness of outcomes reduces if the value of wv is
increased. This is confirmed by a series of simulation with wv ¼ 0:0, wv ¼ 0:7, and
wv ¼ 1:0. Each set of simulation is carried out five times, and the respective results are
overlapped, as illustrated in Figure 11 and Table 2. The trend is very clear that the repeti-
tiveness of outcomes rises from nearly negligible (as wv ¼ 0:0) to almost totally coincident
(as wv ¼ 1:0). When wv is set to 0.7, the uncertainty of distribution of the pattern exists
mainly in the southern part of the region, whereas amajor cluster is observed in the northeast.

Figure 10. Evaluation of the optimized patterns based on F value.

wv =  0 wv =  0.7 wv =  1.0

1 2 3 4 5Overlap (Times) kilometers
0 4 8

Figure 11. Randomness of optimization with regard to different wv values.
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Three more simulations are carried out by using 8000, 15,000, and 23,000 agents,
roughly equivalent to 10, 20, and 30% of the study area, to generate more realistic planning
alternatives of conservation area for natural vegetation. The optimized patterns are shown in
Figure 12a. Meanwhile, another heuristic method for land allocation optimization, the SA
algorithm, developed by Santé-Riveira et al. (2008), is performed to make a comparison
because LP cannot be applied to this large data-set. This method also involves suitability and
compactness (Santé-Riveira et al 2008). Thus, the comparison mainly examines whether the
effectiveness and efficiency of AgentLA are more suited for solving practical problems.

Briefly, the SA algorithm is performed through the following steps. At the beginning of
the procedure, a random configuration was generated and the initial value of the objective

Table 2. Cell counts grouped according to overlap.

Overlap counts

wv 1 2 3 4 5

0 8044 978 0 0 0
0.7 824 648 538 194 1098
1.0 47 44 43 104 1864

Figure 12. Comparison between AgentLA and SA algorithm.
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function (Equation 5) was obtained, denoted as F(0). To generate a trial solution, a small
perturbation was added. Then, the value of the objective function was calculated for the trial
configuration, denoted as F(1). If the difference between F(0) and F(1) is greater than 0 then
accept this trial configuration; otherwise the probability of acceptance is calculated using the
exponential function: Exp[(F(1)-F(0))/T]. We set the initial value of temperature T = 100,
and the cooling constant = 0.98. T decreases at each step when multiplied by the cooling
constant. In this way, the acceptance probability of worse solution becomes smaller and
eventually reaches the global optimal solution.

All these calculations are performed on the same PC with 2 Gb of memory and an Intel
Pentium D CPU (3.4 GHz). Figure 12 shows the respective optimization results of both
methods, and Table 3 summarizes the results of the F value and time cost. The patterns
generated by SA have lower F values than that produced by AgentLA. Moreover, the
computation time of AgentLA is far less than SA in all three cases. This indicates that
MAS has better computation efficiency.

4. Conclusion

This article has demonstrated a new function of MAS for solving complex optimization
problems. Agents are used to create optimal patterns with a contiguity constraint for
planning purposes. The objectives are to maximize the total amount of land-use suitability
and the compactness of patterns. During the optimization, the relocation of an agent to a
location is decided by two spatial variables: land-use suitability of this location and the total
spatial efficiency. The final optimized patterns are created according to the collective
behaviors of these agents.

The proposed model is first examined through two sets of hypothetical data with
different spatial distributions of land-use suitability: monocentric and polycentric. In the
former case, the pattern quickly converged into a form very close to the known optimum. In
the latter case, there are several subpeak areas of suitability. Some small agent clusters were
formed around these peaks in the early stages, but these clusters were soon decomposed and
eventually formed right at the center with an expected shape. The F values for these two
cases are very close to 1.0, indicating the formation of almost the optimal patterns. An LP
model that can guarantee an optimum is used to further examine the validity of this proposed
model. The comparison between the optimized results of LP and AgentLA shows a great
consistency of these results. This indicates the effectiveness of AgentLA for solving com-
plex optimization problems. Although AgentLAmay not guarantee an exact optimum, it can
provide an approximate one in a convenient way.

Some may suspect, from the perspective of the game theory, the guarantee of producing
even an approximated optimum using MAS. It is because MAS may lead to a Nash
equilibrium rather than an optimum under the game theory. The most distinctive

Table 3. Performance of AgentLA and simulated annealing (SA) algorithm.

Agent counts

8000 15,000 23,000

F value AgentLA 0.8798 0.9036 0.9112
SA algorithm 0.8136 0.8586 0.8877

Time/s AgentLA 956 1500 2091
SA algorithm 2787 3104 3763
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characteristic between this proposed model and that discussed in the game theory is the
relationship/interaction among the individuals. In the game theory, such relationship/inter-
action is more frequently interpreted as competition. In our model, however, the optimized
pattern is a result of the cooperation by agents. Actually, swarm intelligence, such as ant
colony optimization, has been used to solve a lot of optimization problems according to this
cooperation strategy (Li et al. 2009a, b).

The proposed method is used to produce the optimal conservation area for natural
vegetation protection in Panyu, a rapidly urbanized region. The experiments with various
sets of model configuration reveal that this model can produce the most satisfactory results
when wv falls between 0.5 and 0.8. A comparison to another heuristic method, the SA
algorithm, is further performed. The result indicates that AgentLA has better effectiveness
and efficiency. This method is more suited for solving land allocation optimization pro-
blems. This study mainly aims at spatial optimization of single land-use type. The
complexity of optimization for multiple land-use types increases enormously because of
involving more spatial variables and interdependent relationships. This proposed model
should be extended to handle these issues in our future studies.
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