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This article presents a new method of assimilating process context information into
change detection for monitoring land use changes. The accurate information about
land use changes is important for implementing many global and regional environ-
mental models. Two types of models have been independently developed to obtain
such information, including change detection models (e.g. pixel-to-pixel comparison,
post-classification comparison and object-based change analysis) and simulation mod-
els (e.g. cellular automata (CA) and agent-based modelling). These models may have
limitations in capturing land use dynamics when used alone. In this study, the ensem-
ble Kalman filter is used to obtain the best estimate of land use changes by combining
remote-sensing observations with urban simulation. Urban simulation is able to provide
process context information such as diffusion and coalescence of urban development.
This type of complementary information is useful for improving the performance of
change detection. Compared with traditional change detection models, this integrated
model has the potential to improve the performance of change detection in terms of
accuracies and landscape metrics. For example, the assimilating (MLC + CA) method
can show improvement of the total accuracy and the kappa coefficient by 2.5–5.2% and
3.6–7.4%, respectively, in this study.

Keywords: process context; cellular automata; change detection; data assimilation;
ensemble Kalman filter

1. Introduction

Studies have indicated that land use changes have profound impacts on regional and global
weather and climate (Brovkin et al. 2004), and vice versa (Lapola et al. 2011). Two types
of models have been proposed to obtain information about land use changes: (1) change
detection models such as pixel-to-pixel comparison, post-classification comparison and
object-based change analysis (Martin 1989, Walter 2004, Im 2008) and (2) simulation
models such as cellular automata (CA) and agent-based models (ABMs) (Li and Yeh 2002,
Parker et al. 2003). These two types of models are formulated based on quite different
approaches. The former is to reveal land use changes according to the spectral or contex-
tual properties of remote-sensing data. The latter is based on the mechanism of interactions
and feedbacks. It attempts to describe or predict land use changes by using transition rules
or behaviour rules (Li et al. 2011a).
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1668 X. Li et al.

The accuracy of change detection is always a major concern for successful remote-
sensing applications in a variety of disciplines (Li and Yeh 1998). The development of
effective change detection methods has attracted widespread attention with rich litera-
ture (Eastman and Fulk 1993, Li and Yeh 1998). A common method for detecting land
use changes is to compare two or more dates of the images that cover the same study
area. The detection frequently employs two basic methods: the pixel-to-pixel comparison
(without classification) and the post-classification comparison (Martin 1989). Although the
pixel-to-pixel comparison is effective for detecting a pixel that has experienced changes,
this method cannot know what kind of changes has taken place (Li and Yeh 1998). The
post-classification comparison is to identify land use changes by carrying out two or more
independent classifications. The advantage of this technique is that the land use types for
each pixel are obtained from time-series images. Overlaying these classified images reveals
not only the amount and location of change, but also the nature of changes (Howarth and
Wickware 1981).

As one of the most appropriately and commonly used methods for change detection,
the post-classification comparison is usually based on supervised classification of each
remotely sensed image (Jensen 1996). Supervised classification can be carried out by
using a number of methods such as the per-pixel maximum likelihood classification (MLC)
(Foody 1999) and the artificial neural networks (ANNs) (Paola and Schowengerdt 1997).
The former assumes that the distribution of a class sample is normal. This method adopts
the Bayes’ theorem for decision making. The latter attempts to simulate the vast network
of neurons in the human brain for reasoning and learning. An advantage of this method
is that the distribution of a class sample is not necessary to be normal during supervised
classification.

Recently, object-based analysis has attracted growing attention for remote-sensing
classification and change detection because of the proliferation of high-resolution satel-
lite images (e.g. IKONOS and QuickBird). It is considered that traditional pixel-based
analysis may not function well with these high-resolution satellite images (Im 2008).
New algorithms for object-based analysis have been proposed to overcome this problem
by using contextual information and shape properties, as well as spectral information
(Walter 2004).

Change detection models may suffer from a series of errors or uncertainties. It is
because these models are implemented by using only spectral or contextual information
retrieved from remotely sensed imagery. The classification accuracies are affected by sen-
sors’ noises, atmospheric disturbances and limitations of classification algorithms (Yeh
and Li 2006). Moreover, the mixed pixels of remote-sensing data also cause the misclas-
sification of land use types because of the limitations of spatial resolution (Ibrahim et al.
2005). The errors of each independent classification can lead to inaccurate information on
land use changes. Studies have indicated that these classification errors will result in the
overestimation of land use changes (Fung and LeDrew 1988, Li and Yeh 1998).

The second approach for simulating land use dynamics is developed almost outside the
field of remote sensing. It is well recognized that land use dynamics is a kind of non-linear
geographical process (Batty and Xie 1994). These simulation models, such as CA and
ABMs, have been increasingly used to simulate a variety of non-linear geographical pro-
cesses since the 1980s (Batty and Xie 1994, Li and Yeh 2002, Parker et al. 2003, Benenson
and Torrens 2004). Especially, CA have become a quite common tool for simulating urban
and land use dynamics (Batty and Xie 1994, Li and Yeh 2000). CA were initially developed
by Ulam in the 1940s, soon used by Von Neumann (White and Engelen 1993) and further
extensively examined by Wolfram to study the logical nature of self-reproducible systems
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(Wolfram 1984, 2002). In the last three decades, a number of standard CA models or tools
have been well established for urban land use simulation. They may be based on SLEUTH
(Slope, Land cover, Exclusion, Urbanization, Transportation, and Hillshade) (Clarke et al.
1997), multi-criteria evaluation (MCE) (Wu and Webster 1998), logistic regression (Wu
2002, Li et al. 2008), neural networks (Li and Yeh 2002), decision trees (Li and Yeh 2004)
and genetic algorithms (Li et al. 2008).

It is obvious that the above change detection and simulation models have their own
advantages and disadvantages. Methodologies should be developed to combine these two
approaches to improve the performances of change detection. It is expected that the assim-
ilation techniques that are considered as ‘the best’ estimates of the current state of the
system can serve this purpose (Kalman 1960). In recent years, there are increasing studies
on the development of assimilation techniques by exploiting the availability of remotely
sensed land surface variables (McLaughlin 2002, Andreadis and Lettenmaier 2005). For
example, rapid progresses have been made in data assimilation in hydrological modelling
by using available remotely sensed soil moisture data (Ni-Meister 2008). The uncertain-
ties in environmental modelling are minimized by recursively updating model states and
parameters, in which all sources of uncertainties are explicitly taken into account (Mo et al.
2008). Very plausible results have been achieved by applying data assimilation techniques
to atmospheric, climate, hydrological and ocean modelling (Kalnay 2003).

The Kalman filter was initially used as an exact optimal solution of data assimilation for
a linear system (Kalman 1960). For non-linear systems, the extended Kalman filter (EKF)
was developed to calculate the derivatives of linearized equations (Jacobian matrix), which
propagate the error covariance to approximate the non-linearities of the prediction models.
However, sometimes there are difficulties in deriving the non-linear land surface models
using the EKF. The ensemble Kalman filter (EnKF) was proposed as an alternative to the
EKF for non-linear problems (Evensen 1994). This method uses a Monte Carlo approach
to produce an ensemble of model trajectories (Ni-Meister 2008).

Our work differs from traditional change detection methods by assimilating process
models with remote-sensing data. Studies have shown that CA can be coupled with other
models for obtaining better modelling results (Li et al. 2011b). In this study, we further
propose to tackle the problem of overestimating changes by integrating these two types
of approaches. It is expected that the performance of change detection can be improved
by using process context information as well as contextual information and shape proper-
ties that have already been used in other studies. Change detection models and simulation
models have been used independently so far. The following sections will discuss the
methodology of assimilating process context information into change detection by using
the EnKF for fast-growing regions.

2. Methodology

The proposed model involves a series of techniques such as change detection, urban simu-
lation and data assimilation. First, maximum likelihood classification (MLC) and artificial
neural network classification (ANNC) are carried out to obtain land use classes for each
time period to provide input to post-classification comparison. Then CA are used to simu-
late land use dynamics for obtaining the process context information of an urban system.
Such information can reveal the properties of non-linearity and fractal dimensions of land
use changes. Finally, the EnKF is adopted to assimilate the process context information
from urban simulation into change detection. Figure 1 is the flowchart of the proposed
methodology that is elaborated in the following sections.
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Figure 1. Flowchart of assimilating the process context information into change detection models.

2.1. MLC and ANNC

The change detection is accomplished according to the post-classification comparison
method. There are generally two major methods for classification: pixel-based approaches
(Martin 1989) and object-based approaches (Hay and Castilla 2008). In our study, the clas-
sification is carried out by using a pixel-based approach as an example. This is because
the process model (cellular automaton) is usually implemented based on cells or pixels (Li
et al. 2011a). The use of a pixel-based approach can allow the implementation of assimila-
tion more easily, although an object-based approach could be developed. Another reason is
that the detection of land use changes in this study is only based on Landsat satellite images
instead of high-resolution images such as Quickbird. A pixel-based approach should be
much simpler to implement than an object-based approach under this situation.

The first step in using the pixel-based approach is to classify each temporal image by
using two common methods: MLC and artificial neural network classification (ANNC).
MLC is the most common method for the supervised classification of remote-sensing data
(Li and Yeh 1998). This method assumes that assigning a pixel to a class or category
can be decided by using strict conditional probabilities (Richards and Jia 1999). These
probabilities are usually estimated according to the well-known Bayes’ theorem if sufficient
training data are available for each class (Freund 1992).

ANNs have been widely used for solving classification problems (Paola and
Schowengerdt 1997). We also construct a neural network to classify land use types on
each temporal image. The classification needs to train the network by determining the
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adaptive weights that address the strengths of network interconnection between associated
neurons. These weights are obtained according to the back-propagation method that iter-
atively minimizes an error function over the network (calculated) outputs and the desired
outputs by using a training data set (Foody 1999). Once the optimized weights have been
obtained from the training data set, the network can yield the classification results in the
output layer. For example, the neurons in the output layer can calculate the membership
(probability) value of a land use type for a particular pixel.

2.2. Process context information derived from CA

CA can provide complementary information about land use dynamics, which can be used
to improve change detection. CA have been successfully applied to the simulation of many
complex natural systems such as the fluctuation of animal population (Couclelis 1988),
settlement changes (Deadman et al. 1993), evolution of cities (Batty and Xie 1994), wild-
fire diffusion (Clarke et al. 1994), land use conversion (White et al. 1997, Li and Yeh
2002), vegetation dynamics (Balzter et al. 1998, Favier and Dubois 2004) and ecological
changes (Wang and Zhang 2001). Studies have shown that CA can provide useful infor-
mation about the emergent and non-linear behaviour (e.g. fractal dimensions) of urban
systems (Batty and Xie 1994, White et al. 1997). These models can capture the complexity
of urban patterns and processes according to local interactions.

Transition rules are used to address local interactions in urban and land use simulations.
These rules can be in the form of conversion probabilities. For example, the probability for
urban development is a function of the various distances to town centres and roads and the
existing amount (e.g. development densities) of urban land use in the neighbourhood (Wu
and Webster 1998). Actually, CA have a very similar form like many non-linear process
models that are used for data assimilation. A general form of CA can be given as follows
(Batty and Xie 1994, Li and Yeh 2000):

St+1 = f (St, �) + εt (1)

where St is a set of possible discrete states (e.g. land use classes) at time t; St +1 are the
converted states at time t + 1; � is the neighbourhood of all cells providing input values to
the transition function f , which determines the state conversion from time t to t + 1; and
εt is a stochastic factor representing model errors.

More detailed transition rules are required to implement CA. In this study, the CA
model is based on logistic regression, although there are a number of other methods such as
neural networks (Li and Yeh 2002), decision trees (Li and Yeh 2004) and genetic algorithms
(Li et al. 2008). The logistic-CA should be one of the most popular CA models because
of its calibration capability (Wu 2002, Li et al. 2008, 2011). This CA model is based on
the estimation of the conversion probability from the non-urban land use type to the urban
land use type:

pt
ij
= exp(zt

ij
)

1 + exp(zt
ij
)

= 1

1 + exp( − zt
ij
)

(2)

where pt
ij

is the conversion probability at time t for cell ij; zt
ij
= a0 + a1x

1
+ a2x

2
+

. . . + amx
m

+ . . . + aM x
M

, where a0 is the constant; xm is a spatial (physical) variable
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1672 X. Li et al.

representing a driving force for urban development; and am is the parameter (weight) of
an associated variable.

Equation (2) only addresses the global interactions that are in the form of various spa-
tial variables. Actually, local (neighbourhood) interactions are the core of CA, which are
used to simulate complex non-linear systems. Urban development should also be subject
to the local interactions as well as the global interactions. Moreover, sometimes geograph-
ical constraints (e.g. topography, protected ecological land and planning schemes) can be
included to address environmental and ecological conditions that restrict land development.
By incorporating all these factors, the development probability is further revised as follows
(Li et al. 2008, 2011):

pt
ij
= (1 + (− ln γ )α)

1

1 + exp
(
−zt

ij

) × f
(
�t

ij

)
× con

(
st

ij

)
(3)

where γ is a stochastic factor ranging from 0 to 1; α is a parameter to control the stochastic
degree; f (�t

ij) is the development intensity in the neighbourhood of �ij; and con(st
ij) is the

combined constraint score ranging from 0 to 1.
At each iteration of simulation, pt

ij
is compared with a threshold value to determine

whether a non-urbanized cell can be converted into an urbanized cell:

St+1
ij =

{
Converted, pt

ij
≥ T

Non-converted, pt
ij
< T

(4)

where T is a threshold value.
The threshold T is determined in such way that the total number of converted cells will

be equal to the actual one that can be estimated from the actual land demand or remote-
sensing observed data (Li and Yeh 2004). This CA model is implemented by using a free
GeoSOS package(available at http://www.geosimulation.cn/) (Li et al. 2011a). This model
will be used to simulate the non-linear urban dynamics of the study area by providing the
process context information for change detection. This type of information derived from
urban simulation should be able to capture some distinct processes of urban development
and land use changes such as evolution of fractal dimension, urban diffusion and coa-
lescence. Section 2.3 will discuss the methodology of combining these different types of
information by using the EnKF.

2.3. EnKF for assimilating process context information into change detection

In this study, the assimilation is to blend the observational measurements from remote
sensing and the modelling results from CA. This is implemented by using the EnKF, which
can provide the best estimate of the system states according to the model predictions and
observations (Reichle 2008). The Kalman filter has been widely used for solving a variety
of data fusion problems (Kalman 1960, Ni-Meister 2008). By using this Kalman filter, the
uncertain states (the probabilities for land use classes) obtained from CA (Xt), given a set
of observed states (Y 1:t) detected from remote sensing, can be presented by the conditional
probability density function p(Xt|Y 1:t). Merging the model estimates with the observations
is carried out by using this ensemble Kalman method.
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First, the model estimates could be obtained from one of these geographical process
models such as climate models, hydrological models, CA and ABMs. In our study, a cel-
lular automaton is used as the process model, which can be defined as the evolution of the
states (e.g. the probability for a land use class) from time t – 1 to time t (Ni-Meister 2008):

Xt = f (Xt−1, μt−1) + εt (5)

where Xt is a model state vector at time t; f is a non-linear function (transition rules)
describing the evolution of the states from time t – 1 to time t; μt−1 is a vector of model
inputs; and εt is the model error vector.

The simulated states (probabilities) are assumed to be related to the observed ones
according to the following equation:

Yt = h(Xt) + υt (6)

where Yt is the observed probability; h is a non-linear transformation function; and υt is
the observational error.

Many methods have been developed to improve the model estimates with observations.
The simplistic method is to replace the model estimate with the newly arrived observation.
However, this method is problematic because the observation itself is not error-free. Some
optimization methods have been developed to produce better assimilation effects. The basic
concept of data assimilation can be easily explained by considering a scalar model variable
X with uncertainty (or error variance) σ 2

X and a corresponding scalar observation Y with
uncertainty σ 2

Y . The objective function J can be defined to measure the misfit between the
true state T and the model estimate X and the observation Y (Reichle 2008):

J = (Tt − Xt)2

σ 2
X

+ (Tt − Yt)2

σ 2
Y

(7)

The optimization is to find the least squares estimate T̄ of the true state T based on the
available information. The minimization can be obtained by solving dJ/dX = 0. This yields
the following equation (Reichle 2008):

Tt = (
σ 2

X + σ 2
Y

)−1 (
σ 2

Y X + σ 2
X Y

)
= (1 − K)X + KY

(8)

where the Kalman gain K = σ 2
X

/(
σ 2

Y X + σ 2
X Y

)
(0 ≤ K ≤ 1).

Equation (8) indicates that the best estimate (or analysis) T t is a weighted sum of the
model background X and the observation Y . It is apparent that the gain will be large if the
measurement error variance σ 2

Y is small, and the resulting estimate will be very close to the
observation, and vice versa. Equation (8) can be rewritten as follows:

T t = X + K(Y − X ) (9)

The above method may be too simplified to solve real-world problems. Actually, data
assimilation consists of two steps: prediction (background) and updating (analysis). The
prediction step is the transition of state variables from one observation time to the next
according to the transition function. The updating (analysis) step involves the updation of
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the forecasted (propagated) states when the new observation arrives. These two steps can
be represented using the following equations:

X −
t = f

(
X −

t−1, μt−1
)

(10)

X +
t = X −

t + Kt

[
Yt − h(X −

t )
]

(11)

where X −
t is the background state at time t predicted by the model; X +

t is the analysis state
updated by the newly arrived observation; the measured and predicted vector difference,[
Yt − h(X −

t )
]
, is used to make a correction to the model predicted system state vector to

improve the state; and K is the Kalman gain.
The calculation of derivatives of linearized equations (Jacobian matrix) is required to

propagate the error covariance to approximate the non-linearities of the process models
(Quaife et al. 2008). This can be carried out by using the so-called EKF (Reichle 2008).
However, EKF has a series of limitations in terms of implementation and tuning. It is only
reliable for solving the problems that are almost linear on the timescale of the updates
(Ni-Meister 2008). As an alternative to the EKF for non-linear problems, the EnKF was
developed to reduce the number of degrees of freedom to a manageable level (Evensen
1994).

In EnKF, a state variable (X ) from a process model has n ensemble members, that is,

X −
t = {

x1−
t , x2−

t , x3−
t . . . xn−

t

}
(12)

where x1−
t , x2−

t , x3−
t . . . xn−

t are the ensembles of the forecasted model state at each time t.
These ensemble members can be created by adding random noises to the parameters of a
process model (Huang et al. 2008).

The model error covariance matrix can be calculated from these ensembles according
to the following equation:

P−
t = 1

N − 1

N∑
i=1

(
X −

t − X −
t

) (
X −

t − X −
t

)T
(13)

where

X −
t = 1

N

N∑
i=1

X i
t

The Kalman gain in Equation (11) is given as follows (Moradkhani 2008):

Kt = P−
t HT

(
HP−

t HT + R
)−1 = Cxy

t

(
Cyy

t + R
)−1

(14)

where H is the Jacobian of the function h and R is the sample covari-
ance matrix of the observation ensemble {yi

t}; Cxy
t = P−

t HT and Cyy
t = HP−

t HT =
1

N−1

∑N
i=1

[
H

(
X −

t

) − H
(

X −
t

)] [
H

(
X −

t

) − H
(

X −
t

)]T
.
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3. Model implementation and results

3.1. Spatial data and model parameters

The proposed model is applied to the change detection in the study area of Panyu. Panyu
has a total area of 786.2 km2, situated in the core of the Pearl River Delta, China (Figure 2).
Recently, the study area witnessed fast land use changes because of economic and pop-
ulation growth. According to the classified satellite Thematic Mapper (TM) images, its
urban area was 173.3 km2 in 2003, but expanded to 243.6 km2 in 2008. The annual rate
of urban expansion was as high as 7% in that period. Empirical studies have shown that
the urban land expands by 3% when the economy, measured by gross domestic product,
grows by 10% in China (Deng et al. 2008). In terms of its economic growth, the rate of
land consumption in Panyu is unusually higher than the normal average rate in China.

The change detection needs to use time-series satellite images for monitoring land
use changes in the study area. These data include cloud-free Landsat TM images dated
30 December 1995, 9 December 1999, 17 October 2003 and 4 March 2008. The study
area of Panyu was extracted from the Guangzhou Landsat TM scene (No. 122-44 in the
Reference System of China Remote Sensing Ground Station). Each subscene has an area
of 1295 pixels (columns) × 1123 pixels (rows), equivalent to a total area of 1308.9 km2.

The radiometric correction and geometric correction were carried out for these multi-
temporal images. First, the dark object subtraction method was used to minimize the
influences of different weather and light conditions on land use classification (Chavez
1988). Second, geometric corrections for these images were carried out by using ground
control points. The total root mean squared error of the geometric correction was less than
0.5 pixels. These images were finally georeferenced into the Transverse Mercator system.

23° 45′ 0″ N

23° 20′ 0″ N

22° 55′ 0″ N

113° 25′ 0″ E 113° 45′ 0″ E 114° 10′ 0″ E N

0 25 50 km
Study area

Figure 2. The study area of Panyu in the Pearl River Delta.
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High (1)

Distance

Low (0)

0 5 10 km
N

High (1)

Low (0)

0 5 10 km

(a) (b)

(d)(c)

Figure 3. Various proximity variables of the cellular automaton. (a) Distance to settlement centres.
(b) Distance to town centres. (c) Distance to roads. (d) Distance to underground stations.

Locational (spatial) factors play an important role in driving land use changes (Wu and
Webster 1998). In urban simulation, these factors usually include various proximities to
attraction centres (Batty and Xie 1994, Wu 2002, Li et al. 2011a). In this study, these fac-
tors include the distances to the settlement centres (DSettleCentre), town centres (DTownCentre),
roads (DRoad) and underground stations (DGroundstation) (Figure 3).

The total number (size) of ensemble members may have effects on the performance of
data assimilation. The model predictions are poor when the ensemble size is small (e.g. <5)
(Reichle and Koster 2003). The increase in the ensemble size will improve the performance
of data assimilation, but at the cost of increasing computation time. The ensemble size of
10–20 is usually acceptable because the model predictions improve very little, especially
when the ensemble size is greater than 50 (Crow and Wood 2003, Reichle and Koster
2003). In this study, the ensemble size was set to 20 for the computational reason.
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3.2. Obtaining model results from CA and observations from remote sensing

Training data were selected from time-series TM images (e.g. 1995, 1999, 2003 and
2008 TM images) to calibrate CA and derive the maximum likelihood classifier and the
artificial neural network classifier (Li and Yeh 2004, Pal 2008, Bazi and Melgani 2010).
For each temporal image, a total of 53 sites (patches) were selected to obtain the training
and test data. These sites consisted of a total of 12,390 pixels. The selection of these sites
was to cover broad geographical features and land classes as much as possible (Figure 4).

Among these 12,390 pixels, 10,000 pixels were used as the training samples while
2390 pixels were reserved as the test samples. Twenty ensembles for the assimilation were
created by using different subsets of training samples for calibrating the CA model. For
creating a subset, 2000 samples were randomly drawn from these 10,000 training data.
This procedure was repeated 20 times to obtain a total of 20 training subsets. Then these
subsets were used to obtain various combinations of parameters for the logistic-CA (Wu
2002). These combinations yielded 20 simulation results that were used as the ensembles(
X −

t

)
for the assimilation.

The simulation of land use dynamics was implemented by using the logistic-CA pro-
vided by the free GeoSOS package (Li et al. 2011a). This package is equipped with a
variety of tools that can calibrate CA after the empirical data about urban development and
independent spatial variables (e.g. proximity variables) have been defined. CA are usually
calibrated by using the empirical information in the early stage, and then the calibrated
models can predict the future changes if the growth trend continues. The empirical infor-
mation about the land use changes was obtained from the classifications of the first two
TM images in 1995 and 1999. With this empirical information as the dependent, the tran-
sition rules of CA were derived through the logistic regression using a series of proximity
variables as independents (Wu 2002, Li et al. 2008).

The calibrated CA are obtained by using different training subsets. These models were
then used to simulate the urban dynamics for the study area in 1995–2008 (Figure 5). The
simulation assumes that the development trajectory of the study area remains unchanged.

Investigation sites

0 5 10 km

N

Figure 4. Investigation sites for constructing land use classifiers and calibrating cellular automata.
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Figure 5. Obtaining urban land and non-urban land classes in the study area in 1999, 2003 and
2008, respectively, using MLC, ANNC, and cellular automata (CA).

Table 1a also shows the average accuracies of the land use simulation based on the test
data.

Two types of classifiers, MLC and ANNC, were also constructed according to the tra-
ditional methods of using these training data. Then MLC and ANNC were used to classify
the urban land and the non-urban land in the study area in 1995, 1999, 2003 and 2008,
so that urban expansion could be revealed (Figure 5). It is straightforward to use overall
accuracy to assess the performances of these classifiers by using the test samples. However,
studies have shown that the kappa coefficient is a better indicator than the overall accuracy
because the former can address the difference between the actual agreement and the chance
agreement (Li and Yeh 1998). Table 1a provides the classification assessment of MLC and
ANNC in terms of the overall accuracy and the kappa coefficient with these test data.

3.3. Assimilating process context information into change detection

The EnKF was then used to assimilate urban dynamics into change detection. Table 1a
indicates that both the change detection models (e.g. MLC and ANNC) and CA models
have their own classification errors. It is expected that EnKF will obtain the better estimate
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of classified land use types for these temporal satellite images and then yield the better
change detection results by combining the advantages of these models.

First, the background probability for a land class, X −
t , was simulated according to the

logistic-CA. The observations for the actual probability were obtained by using MLC and
ANNC. Then the EnKF was used to obtain the analysis state (the updated probability),
X +

t , which was updated by the new arrived observation based on Equation (11). Since the
updated probability is the best estimate of the ‘true’ probability, it was used to replace the
original one of MLC and ANNC during the final land use classification.

As a comparison, a voting method was also used to combine different models to
improve the change detection. Each model has a weight contributed to the classification.
The weight is estimated according to its classification accuracy as follows:

Wi = Ei∑
j Ej

(15)

where Wi is the weight for model i and Ej is the classification accuracy for model j.
The final probability based on this voting method is given as follows:

P =
∑

i

Wi Pi (16)

where P is the final probability and Pi is the probability estimated by model i.
There are a number of combinations in terms of different models (e.g. MLC, ANNC

and CA) and different merging methods (the assimilation method and the voting method).
Figure 6 shows the effects of different model combinations on improving the performance
of change detection.

It is interesting to find that the accuracies of MLC, ANNC and CA unanimously
decrease with time (Table 1a). The decrease in the accuracies of MLC and ANNC is rather
related to the increase in the complexity of land use patterns. Figure 7 shows the evidences
of the increase in the complexity of land use patterns in the selected areas of Panyu with
time. This increase is caused by more diversified and fragmented use of land resources in
this fast-growing region. It is reasonable that the increase in the complexity of land use
will make the identification of training samples more difficult. This will probably result in
the decrease in classification accuracies. However, the accuracies of CA will degrade with
time because this model is built by using the earlier training data in 1995 and 1999.

The capability of capturing and predicting urban dynamics by CA can also be demon-
strated by using some landscape metrics as well as the above accuracy indicators. These
landscape metrics may include the fractal dimension and entropy, which can reveal the pro-
cess context information related to non-linear properties of an urban system. Studies have
shown that the fractal dimension is one of the inherent and important features of an urban
system (Batty and Longley 1994). The fractal dimension reflects the fact that urban forms
are usually irregular and complicated. As a city evolves, the fractal dimension tends to
increase steadily because urban land will fill up the space. This has been proven by exam-
ining the historical growth of many cities in the world (Batty and Longley 1994). Figure 8a
compares the fractal dimensions of the study area, which were obtained by using remote
sensing and urban simulation, respectively. These two fractal dimensions increase with
time, sharing a very similar growth trend. Therefore, urban simulation is able to capture
the process context information of urban systems.
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Figure 6. Effects of improving the performance of change detection by using different models (e.g.
MLC, ANNC and cellular automata (CA)) and different merging methods (the assimilation method
and the voting method).

The indicator of entropy can also be used to measure the landscape changes related
to the urban dynamics. Studies have shown that Shannon’s entropy is a good statistic for
measuring the spatial distribution of various geographic phenomena (Yeh and Li 2001).
Figure 8b clearly shows that there is a similar trend of increase in entropy from both remote
sensing and urban simulation. The indicator of compactness (area/perimeter ratio) can also
well reveal the patterns and processes of land use dynamics (Li and Yeh 2000). It is inter-
esting to see that the compactness obtained from both remote sensing and urban simulation
increases with time because the space has been filled up with built-up areas (Figures 6 and
8c). Therefore, CA models can yield useful information about the process context of urban
dynamics, which should be incorporated to improve change detection. It is because CA
have the capability of simulating non-linear processes in an urban environment.

Table 1b compares the classification performance of different combinatorial methods.
It is found that the assimilating (MLC + CA) method shows the general improvement of the
total accuracy and the kappa coefficient by 2.5–5.2% and 3.6–7.4%, respectively, compared
with a pure classification method (MLC). The assimilating (ANNC + CA) method also
shows the improvement of the total accuracy and the kappa coefficient by 2.3–4.0% and
4.3–8.6%, respectively, compared with a pure classification method (ANNC).
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Location of  selected areas in Panyu

(a) (b) Increase in the complexity of  land use patterns with time
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1999 2008

Figure 7. Increase in complexity of land use patterns with time in selected areas (b) in a selected
area in Panyu (a).
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Figure 8. Increase in the values of fractal dimension (a), entropy (b) and compactness (c) with time.

The voting method (MLC + CA) shows the improvement of the total accuracy and the
kappa coefficient by 1.5–2.2% and 0.5–2.4%, respectively, compared with a pure classifi-
cation method (MLC). The voting method (ANNC + CA) shows the improvement of the
total accuracy and the kappa coefficient by 0.7–1.1% and 0.2–2.1%, respectively, compared
with a pure classification method (ANNC).

Another convenient way of identifying the effects of the proposed method is to inspect
the zoomed-in original TM image and its various classified images. For example, the ‘true’
land use classes can be obtained by using the simple visual interpretation of the TM image
in 2003 (Figure 9). It is found that classification errors are obvious in the areas within
the red circles at locations A, B, C and D if conventional methods (MLC and ANNC)
are used alone (Figure 9b). Location A is bare land, location B is agricultural land and
locations C and D are fishponds according to the colour and tone of the TM image in
2003. All of them are non-urban land use type. However, it is found that some of these
non-urban pixels are misclassified as urban pixels (black colour in Figure 9b) at these
locations by using the conventional methods (MLC and ANNC) alone. It is because there
are spectral confusions between these land use types. However, the assimilation method,
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Location of  a selected area in Panyu(a)
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Confusions of  land use classification identified in the selected area in 2003
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Figure 9. Confusions of land use classification by traditional methods (b) in a selected area in
Panyu (a).

the assimilating (MLC + CA) and the assimilating (ANNC + CA), can reduce the number
of misclassified pixels (the pixels of black colour) at these locations by incorporating the
information of process context.

The above experiments have demonstrated that properly combining different mod-
els can help in improving the performance of classification. Both the assimilating model
and the voting model can yield better classification accuracies than the pure classification
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methods (MLC and ANNC). However, the assimilating model can have a better improve-
ment of the classification than the voting method according to the comparison. As a result,
the improvement of classification can yield better results of change detection because of
post-classification comparison.

4. Conclusion

The information about land use changes is usually obtained by the overlay of classified
temporal remote-sensing data. Land use classification is subject to a series of uncertainties.
There is overestimation of the degree of land use changes because of classification errors
(Li and Yeh 1998). Various techniques have been proposed to improve the performances of
change detection. However, traditional techniques have limitations because of purely using
the spectral or contextual information extracted from remote-sensing data.

In this article, we present a new method for improving the performance of change
detection by using the process context information derived from urban simulation. The
reduction in uncertainty through the assimilation of change detection models with CA
models can lead to more accurate change detection results. This study has demonstrated
that the EnKF can be effectively used to merge these different types of models. By inte-
grating various amounts of satellite data and model predictions, this proposed method can
have the potential to improve the estimates of land use changes in terms of overall accu-
racy and pattern/process metrics. CA can provide additional information about the process
context (spatiotemporal relationships), which is useful in reducing change detection errors,
because urban simulation is effective in capturing some distinct processes of urban dynam-
ics, such as diffusion and coalescence, with each process following a regular pattern (Batty
and Xie 1994).

Our experiments have indicated that the proposed assimilating model exhibits an
increase in overall detection accuracy compared with the original maximum likelihood
classifier (MLC) and artificial neural network classifier (ANNC). For example, the assim-
ilating (MLC + CA) shows the general improvement of the total accuracy and the kappa
coefficient by 2.5–5.2% and 3.6–7.4%, respectively, compared with the pure MLC. The
assimilating (ANNC + CA) shows the improvement of the total accuracy and the kappa
coefficient by 2.3–4.0% and 4.3–8.6%, respectively, compared with the pure ANNC. The
voting model can also have better accuracies of change detection than these traditional
methods. However, this voting model has relatively poorer effect than the assimilating
model.

It is also interesting to find that the accuracies of urban simulation and change detec-
tion decrease in the study area as a result of increasing complexity of land use patterns.
The landscape patterns evolve as the fractal dimension and entropy unanimously increase.
The process context information is useful for enhancing the capability of change detection
by providing more detailed spatiotemporal information. The analysis also indicates that
this approach could derive more generic results as well as improve the overall accuracy.
Although the rate of improvement is not that impressive, this approach can allow change
detection to capture the overall trend in urbanization but the exact locations could be dif-
ferent or have a shift caused through other systematic biases. More specifically, CA can
well reflect the information of fractal dimensions and shape metrics, although this may not
be on a cell-by-cell basis.

This study only demonstrates the possibility of assimilating some common change
detection methods (e.g. maximum likelihood classifier and artificial neural network clas-
sifier) with CA. Future studies may need to consider other models of assimilation such as
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ABMs, object-based change detection models and an integrated model with less-expensive
computing. A simplified method could be developed that would allow to incorporate
the process/context for change detection more conveniently. Moreover, there is also a
growing trend to move from the pixel-based analysis to Geographic Object-Based Image
Analysis (GEOBIA) (Hay and Castilla 2008). GEOBIA is especially useful for repre-
senting geographical entities by using high-resolution remote-sensing images such as
Quickbird images (Chen and Hay 2011). Future studies may need to develop a better assim-
ilation method under the object-based framework, since high-resolution remote-sensing
images are available and more frequently used recently. This challenging work will require
the change detection models, the simulation models and the assimilation models to be
implemented based on an object-based approach.
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