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Research Article

A bottom-up approach to discover transition rules of cellular automata
using ant intelligence

XIAOPING LIU{, XIA LI*{, LIN LIU{, JINQIANG HE{ and BIN AI{

{School of Geography and Planning, Sun Yat-sen University, Guangzhou 510275,

Guangdong, China

{Department of Geography, University of Cincinnati, USA

(Received 24 April 2007; in final form 15 October 2007 )

This paper presents a new method to discover transition rules of geographical

cellular automata (CA) based on a bottom-up approach, ant colony optimization

(ACO). CA are capable of simulating the evolution of complex geographical

phenomena. The core of a CA model is how to define transition rules so that realistic

patterns can be simulated using empirical data. Transition rules are often defined by

using mathematical equations, which do not provide easily understandable explicit

forms. Furthermore, it is very difficult, if not impossible, to specify equation-based

transition rules for reflecting complex geographical processes. This paper presents a

method of using ant intelligence to discover explicit transition rules of urban CA to

overcome these limitations. This ‘bottom-up’ ACO approach for achieving complex

task through cooperation and interaction of ants is effective for capturing complex

relationships between spatial variables and urban dynamics. A discretization

technique is proposed to deal with continuous spatial variables for discovering

transition rules hidden in large datasets. The ACO–CA model has been used to

simulate rural–urban land conversions in Guangzhou, Guangdong, China.

Preliminary results suggest that this ACO–CA method can have a better

performance than the decision-tree CA method.

Keywords: Ant colony optimization; CA; Urban simulation; Artificial

intelligence

1. Introduction

Cellular automata (CA) were originally conceived by Ulam and Neumann in the

1940s to provide a formal framework for investigating the behaviour of complex,

self-reproducible systems (White and Engelen 1993). One key feature of CA is that

complex global spatial patterns can be generated by a set of simple local rules. This

‘bottom-up’ approach coincides with complexity theories stating that a complex

system comes from the interactions of simple subsystems. CA provide an effective

way of simulating and predicting the spatial-temporal evolution of complex

geographical phenomena (Batty and Xie 1994, Takeyama and Couclelis 1997). At

the end of the 1980s, Couclelis (1988) put forward the theoretical framework for

geographically oriented CA, and applied it to the simulation of urban expansion

(Couclelis 1985, 1988, 1989) and population dynamics (Couclelis 1988). CA have

been used to simulate many geographical phenomena, such as wildfire diffusion
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(Clarke et al. 1994, Hargrove et al. 2000), epidemic propagation (Sirakoulis et al.

2000), forest dynamics (Lett et al. 1999), landscape changes (Wang and Zhang 2001,

Soares-Filho et al. 2002), urban evolution (Batty and Xie 1994, Clarke et al. 1997,

Couclelis 1997, Li and Yeh 2000, 2002, Wu 2002), and land-use changes (White and

Engelen 1993, Batty and Xie 1994, Couclelis 1997, Clarke and Gaydos 1998, Wu

and Webster 1998, Li and Yeh 2002, 2004). These studies have demonstrated the

capability of CA for simulating and predicting complex geographical processes.

The core of CA is how to define the transition rules, which determine the state

conversion of geographical processes. The determination of transition rules is a

challenging task because of many spatial variables and parameters involved.

Moreover, the experts’ knowledge and preferences also affect the model structure of

CA (Yeh and Li 2006). Some methods are based on heuristics for defining transition

rules. These heuristic models are confronted with a severe computational constraint

(Wu 2002). For example, Clarke et al. (1997) simulated development scenarios using

different combinations of parameter values, and then determined the most optimal

combination through visually comparing the simulated patterns with the actual

ones. However, it is difficult to find the best combination from an extremely large

set of permutations. Clarke and Gaydos (1998) used high-performance workstations

which need at least several hundred hours to find the best combination of parameter

values. Wu (1998) proposed a more structured procedure based on the hierarchical

analysis process (AHP) that defines the parameter values in a heuristic way.

Jenerette and Wu (2001) developed an urban cellular automaton using the genetic

algorithm (GA). Wu (2002) presented an even less subjective method employing

logistic regression models. However, both the AHP and the logistical regression

methods are inherently linear and not good at dealing with the complex

relationships between spatial variables and urban dynamics. An artificial neural-

network (ANN) CA model was developed to obtain parameter values automatically

for capturing a complex relationship (Li and Yeh 2002). Because of its black-box

nature, ANN does not give an insight into the relations actually used in modelling,

leaving the user uninformed about the possible lack of causality in the relations that

are used in the model. Decision tree models were later presented to discover

transition rules of CA (Li and Yeh 2004), which tends to be vulnerable to local

optimization. Kernel-based learning machine has been applied to the induction of

nonlinear transition rules in high-dimension feature space (Liu and Li 2006).

However, this method is also constrained by the use of implicit transition rules and

the need for intensive computation. Thus, we consider it academically interesting

and practically valuable to explore intelligent methods for effective discovering

transition rules in urban CA.

In this paper, an intelligent method (ACO) is used to discover transition rules of

CA. Ant colony optimization (ACO), a computational method derived from natural

biological systems, is first proposed by Dorigo et al (1991). ACO is a multi-agent

system that simulates the natural behaviour of ants according to the mechanisms of

cooperation and adaptation (Dorigo 1992). Complex tasks, such as optimizing the

route for seeking food, can be effectively fulfilled by cooperation and interaction

between ants. Although there is no centralized control dictating the behaviour of the

artificial agents, local interactions among agents can result in the emergence of some

global patterns in the simulation (Dorigo 1992). ACO is in fact a swarm intelligence-

based heuristic system, using positive feedback between agents as a search

mechanism. ACO has become a hot topic in artificial intelligence field (Dorigo

1248 X. Liu et al.
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1992, Dorigo et al. 1996). Satisfactory results have been obtained in solving

travelling salesman problems (TSP), data clustering, combinatorial optimization

and network routing by using ACO Algorithms (Lumber and Faieta 1994, Kwang

and Weng 2002). However, applying ACO to urban simulation has not been

reported for solving nonlinear problems. ACO is based on the ‘bottom-up’ approach

to accomplish complex tasks through cooperation among agents. CA are also based

on a ‘bottom-up’ approach for simulating the behaviour of complex systems, such as

urban evolution. The definitions of transition rules of CA usually require tedious

jobs because of numerous spatial variable and parameters involved in urban

simulation. It is appropriate to use ACO to discover transition rules of CA by

capturing complex relationships.

The studies on classification rule induction using ACO are relatively unexplored.

In fact, ACO is very appropriate to discover classification rules, since mining of

classification rules is a search problem, and ACO is very successful in global

searches. Furthermore, ACO can cope better with attribute correlation than greedy

rule induction algorithms such as decision trees (Alatas and Akin 2005). Parpinelli

et al (2002) were the first to propose ACO for discovering classification rules, with

the Ant-Miner system. In their study, it is demonstrated that Ant-Miner produces

better accuracy and simpler rules than decision trees.

This paper will examine the potential of using Ant-Miner for discovering

transition rules of CA. The objective is to find complex relationships hidden in large

datasets by using GIS and remote sensing data. It is expected that the positive

feedback mechanism of ACO can produce better results in discovering optimal rules

by simulating the behaviour of ants seeking food. A discretization technique is

incorporated in the model to improve the performance of transition rules by using

continue attributes. This ACO–CA model is applied to the simulation of rural–

urban land conversions in a fast-growing city, Guangzhou in China.

2. Ant colony optimization

ACO is based on ants’ behaviours for finding the shortest path when seeking food

without the benefit of visual information (Dorigo 1992). This intriguing ability of

blind ants has been extensively studied by ethologists. They have discovered that, in

order to exchange information about which path should be followed, ants

communicate by means of a pheromone, unique to ants. Ants deposit the

pheromone along their moving path, and the pheromone will be used to guide the

movement of other ants. The amount of pheromone deposited will increase when

the number of ants increases in selecting a certain route. This results in a higher

probability for other ants to choose this route. In this way, ants are capable of

finding the shortest route from their nests to food sources without using visual cues

by exploiting pheromone information. This process can be described as a loop of

positive feedback, in which the probability that an ant chooses a path is

proportional to the number of ants that have already passed by that path

(Dorigo 1992).

The above food-seeking process based on positive feedback information indicates

that ACO is self-adaptive. The process of seeking food by an ant colony is illustrated

by figure 1. If there are no obstacles between ant nests and food sources, the ants will

walk in a straight line to the food (figure 1(a)). If an obstacle cuts off the straight

path at location F (figure 1(b)), the ants have to decide whether to turn right or left

at the cut off point. The first group of ants reaching point F (or H) has no

3D noise mapping in urban areas 1249
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information about which way would lead to the shorter route, they have to make a

random choice. It is expected that, on average, half of the ants turn left and the

other half turn right (figure 1(b)). Because path F–G–H is shorter than F–O–H, the

first half following path F–G–H reaches H before the other half following path F–

O–H. Ants deposit pheromone on paths that they passed by. Intuitively, the amount

of pheromone on path H–G–F is higher than that of path H–O–F. Therefore, an ant

returning from food source to H finds a stronger trail on path H–G–F, which results

in more ants preferring (in probability) path H–G–F to path H–O–F (figure 1(c)).

Consequently, the number of ants following path F–G–H will be higher than the

number of ants following path F–O–H. This causes the quantity of pheromone on

the shorter path to grow faster than on the longer one, and ultimately all ants will

choose the shorter path under this exploratory process (figure 1(d)).

3. ACO-based geographical CA

ACO is basically a multi-agent system in which low-level interactions between

simple agents result in a complex behaviour of the whole ant colony (Dorigo 1992,

Dorigo et al. 1996). ACO belongs to complex adaptive system with some plausible

features, such as robustness, versatility, and nonlinearity. This allows ACO to solve

complex and nonlinear problems through cooperation of ants (Bonabeau et al.

1999). The use of ACO for discovering classification rules, in the context of data

mining, is a new research area with very limited studies. The method of ACO-based

rule discovery was first proposed by Parpinelli et al. (2002). In this paper, a new

method is proposed by using an Ant-Miner program to discover transition rules of

CA.

This Ant-Miner program can discover optimized classification rules by simulating

the behaviour of ants seeking foods. In the simulation, artificial arts can find the

best links between attribute nodes and class nodes (figure 2). The attribute node can

only be selected once and must be associated with a class node. Each route

corresponds to a classification rule, and data-mining for a classification rule can be

regarded as searching for the optimal route. The rule can be represented as follows:

IFSconditionsTTHENSclassT ð1Þ

where <conditions> contains a logical combination of predictor attributes, in the

Figure 1. Route-choice behaviours of ants seeking food.

1250 X. Liu et al.
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form: term1 AND term2 AND …, where each item expressed as the triple

<attribute, operator, value>, where value is a value belonging to the domain of

attribute. The operator element in the triple is a relational operator. <class>
contains the class predicted for cases whose predictor attributes satisfy <condi-

tions>.

Each ant starts with an empty rule. The choice of a term to be added to the

current rule depends on both heuristic function and the amount of pheromone

associated with each term, which will be discussed in detail in section 3.2.

It should be noted that the original continuous values must be discretized in

preprocessing. If the original values are V1, V2, …, Vn for the attributes of A1, A2,

…, An, these values should be discretized as V11, V12, …, V21, V22, …, Vnm. The

following sections will provide a detailed procedure for applying ACO to discover

transition rules of CA.

3.1 Discretization of data

Ant-Miner is capable of finding better rules than other types of rule induction

algorithm, such as decision trees (Parpinelli et al. 2002). However, Ant-Miner only

copes directly with discrete data and cannot work with continuous data. Therefore,

Ant-Miner should use a discretization process to deal with continuous attributes.

Discretization is an effective technique in dealing with continuous attributes for rule

generation (Su and Hsu 2005). This procedure can increase the speed and accuracy

of machine learning (Liu and Wang 2005). In general, results obtained through

decision trees or induction rules using discretized data are usually more efficient and

accurate than those using continuous values (Liu et al. 2002).

Continuous values of spatial variables should be discretized for the discovery of

rules by ACO. Selecting proper methods for this transformation is very important

because it determines the overall quality for generating rules. In this paper, an

entropy-based method is adopted to measure the importance of breakpoint for

discretization of spatial variables (Xie et al. 2005).

A decision table is defined as a table of information comprising a four-element set

(U, R, V, f), among which U refers to a set of objects, i.e. domain; R5C<D, C refers

to a set of spatial variables, and D a Boolean variable indicating if an area is

urbanized or not. V represents the value range of each spatial variable, and f is the

information function.

Figure 2. Route corresponding to classification rule derived from Ant-Miner.

3D noise mapping in urban areas 1251
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If X#U is considered as a training subset consisting of |X| samples, among which

kj samples are noted with decision attribute j(j51, 2, ..., r), then the information

entropy for the training set is (Theil 1967, Xie et al. 2005):

H Xð Þ~{
Xr

j~1

Pj log2 Pj, Pj~
kj

Xj j ð2Þ

where a small value of the entropy indicates that the set X is determined by several

dominant values of decision attributes and a small degree of disorder. With ca
i being

the breakpoint i selected from spatial variable a, samples of decision attribute j(j51,

2, ..., r) belonging to the set X can be divided into two types: those with an attribute

value smaller than ca
i are recorded as lX

j ca
i

� �
, while those greater than ca

i are recorded

as rX
j ca

i

� �
, which can be represented as:

lX ca
i

� �
~
Xr

j

lX
j ca

i

� �
ð3Þ

rX ca
i

� �
~
Xr

j

rX
j ca

i

� �
ð4Þ

Consequently, the set X is divided into Xl and Xr, whose information entropies are

respectively calculated as follows (Theil 1967, Xie et al. 2005):

H Xlð Þ~{
Xr

j~1

Pj log2 Pj , Pj~
lX
j ca

i

� �

lX ca
i

� � ð5Þ

H Xrð Þ~{
Xr

j~1

qj log2 qj, qj~
rX

j ca
i

� �

rX ca
i

� � ð6Þ

Additionally, the information entropy of breakpoint ca
i relative to the set X is

defined as:

HX ca
i

� �
~

Xlj j
Uj jH Xlð Þz

Xrj j
Uj j H Xrð Þ ð7Þ

Suppose L5{Y1, Y2, ..., Ym} is the equivalent samples derived from division of the

set P with breakpoints selected from the decision table; then the new information

entropy after addition of breakpoint c1P becomes:

H c, Lð Þ~HY1 cð ÞzHY2 cð Þz � � �zHYm cð Þ ð8Þ

where a small H(c, L) indicates that the decision attribute value of the new

equivalent subset divided tends to be more monotonous after adding the breakpoint,

which will be more important.

If P is defined as the set of breakpoints, L as the set of equivalent samples divided

by the breakpoint set P, B as the set of breakpoints to be selected, and H as the

1252 X. Liu et al.
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information entropy of the decision table, the process of discretizing continuous

attribute values according to information entropy can be described as follows:

1. For each c g B, calculate H(c, L);

2. If H(min H(c, L), then end;

3. Select and add breakpoint cmin which can make H(c, L) minimum into the set

P;

4. For all X g L, if equivalent X can be divided into X1 and X2 with cmin, then, X

can be removed from L, while the equivalent class X1 and X2 can be added

into L;

5. If each equivalent samples among L shows the same decision, terminate the

circulation. If not, return to step 1.

3.2 Rule construction

ACO is applied to the derivation of classification rules by using these discretized

data. These rules are retrieved according to an approach similar to the collective

process of seeking food by ants. The procedure selects terms repeatedly until a

complete route is constructed.

A heuristic function is designed to guide the search so that the computation time

is significantly reduced. For each term to be added to the current rule, Ant-Miner

computes a heuristic function to estimate the quality of this term, with respect to its

ability to improve the predictive accuracy of the rule. The information entropy is

used to define this function, in which the heuristic value for each attribute node is

proportional to its classification capability (Parpinell et al. 2002). In this paper, a

heuristic function based on the statistical attribute of the data (frequency) is

designed, in which the heuristic value gij of the condition term (termij) is defined as

follows (Duan 2005):

gij~

max
P

n

freqT1
ij ,
P
n

freqT2
ij , � � �

P
n

freqTk
ij

� �

P
n

Tij

ð9Þ

where gij is denoted as the density-based heuristic value of the condition term

(termij), Tij refers to the number of cases fitting to the condition term (termij), and

freqTw
ij is the frequency of class w in Tij.

The record that satisfies the condition part of the rule should be

removed after a final rule has been obtained. Therefore, the values for

max
P
n

freqT1
ij ,
P

n

freqT2
ij , � � �

P
n

freqTk
ij

� �
and

P
n

Tij is updated after a final rule

has been found.

The other two parameters, the amount of pheromone and the probability for the

attribute nodes to be selected, are also important to the generation of rules. The

initial amount of pheromone deposited at each path position is inversely

proportional to the number of values of all attributes, which is given by the

following equation:

tij t~0ð Þ~ 1
Pa

i~1

bi

ð10Þ

3D noise mapping in urban areas 1253
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where tij is the amount of pheromone for the condition term (termij), a is the total

number of attributes, and bi is the number of possible values that can be taken on by

attribute i.

The roulette wheel selection technique is adopted to decide which attribute node

will be included for constructing a path according to the heuristic value (gij) and the

thickness of pheromone (tij). The probability of termij being selected for inclusion in

the current rule is defined as follows:

Pij tð Þ~
tij tð Þ:gij tð Þ

Pa

i~1

Pbi

j~1

tij tð Þ:gij tð Þ
ð11Þ

The selected attribute nodes will be continuously added to the route until all

attributes (including class attributes) are selected to form a complete route (a

classification rule).

The validity of this rule can be assessed by using the following equation (Parpinell

et al. 2002):

Q~
TruePos

TruePoszFalseNeg

� �
: TrueNeg

FalsePoszTrueNeg

� �
ð12Þ

where TruePos (true positives) is the total number of cases covered by the rule that

have the class predicted by the rule; FalsePos (false positives) is the total number of

cases covered by the rule that have a class different from the class predicted by the

rule; FalseNeg (false negatives) is the total number of cases that are not covered by

the rule but that have the class predicted by the rule; TrueNeg (true negatives) is the

total number of cases that are not covered by the rule and that do not have the class

predicted by the rule. The larger the value of Q is, the higher the quality of the rule

becomes.

3.3 Rule pruning

The next step is to prune the discovered rules for improving classification

performance. Rule pruning is a typical technique in data mining. The goal of rule

pruning is to remove irrelevant terms and improve the quality of rules, since a

shorter rule is in general more comprehensible by users. Another motivation for rule

pruning is to improve the predicative accuracy of rules. Furthermore, rule pruning

prevents the rules from overfitting the training data (Brewlow and Aha 1997).

The basic idea of rule pruning is to remove one term from the rule once at a time if

this removal can significantly improve the quality of the rule. One starts with the full

rule consisting of all the terms then removes a term such that the overall quality of

the rule is improved the most. It should be noted that this step might involve

replacing the class in the consequent rule, since the majority class in the cases

covered by the pruned rule can be different from the majority class in the cases

covered by the original rule (Parpinell et al. 2002). In the next iteration, another

term whose removal can most improve the quality of the rule is eliminated from the

rule. The removal process was repeated until there was only one term left in the rule

antecedent or no increase in rule quality was observed. The rule quality is defined by

equation (11).

1254 X. Liu et al.
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3.4 Pheromone updating

At the start of Ant-Miner, the pheromones of all terms are given the same value

based on equation (10). The amount of pheromone at each node of all paths will be

updated after a rule has been accepted. The amount of pheromone associated with

each term will increase if this term is included in a rule, but it will decrease if this

term is excluded from this rule. Therefore, the evaporation coefficient r is used to

represent this process. The amount of pheromone at each attribute node is updated

according to the following formula:

tij tz1ð Þ~ 1{rð Þ:tij tð ÞzDtij tð Þ ð13Þ

Dtij tð Þ~
X

k

Dtk
ij tð Þ ð14Þ

Dtk
ij tð Þ~

Qk

1zQk
if ant k passes over node termij

0 else

(
ð15Þ

where r is the pheromone evaporation coefficient, Q is the quality of a classification

rule, and Dtk
ij tð Þ is the pheromone amount remaining on the node termij by ant k.

When the amount of pheromone for all term nodes has been updated, the next ant

starts a new round of search. This search becomes convergent when the majority of
ants locate the same route for seeking food. The iteration continues until all ants

complete their search. At each iteration, these ants may construct many rules, but

only the rule of the best quality is preserved, and the others are discarded. This

process is repeated until the number of remaining training classes is less than the

predefined number of cases.

The detailed procedures of discovering transition rules of CA by using Ant-Miner

are as follows:

1. obtaining the discretized values for the spatial variables;

2. starting from an empty route for an ant, adding nodes to this route to find a

complete route according to the amount of pheromone at each node;

3. when an ant passes a route, it releases an amount of pheromone at the nodes

according to the travel time (cost). the amount of pheromone will affect the

probability of selecting this route by other ants;

4. pruning redundant rules;

5. updating the amount of pheromones on all the nodes of each route—this
provides feedback for the next round of search;

6. go to step 2 until all the ants have been examined in selecting routes;

7. choose the best rule as a final rule by evaluating all the rules constructed by

these ants;

8. remove the set of cases correctly covered by the final rule discovered by the step 7;

9. go to step 2 until the number of remaining cases is less than a threshold value.

3.5 Discovering transition rules of CA by using ACO

One main characteristic of ACO is the indirect communication by pheromone laying
also known as stigmergy, and another characteristic is the positive feedback

mechanism which accounts for rapid discovery of good solutions. As a result, ACO
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can be used to solve nonlinear problems effectively (Dorigo 1996). Especially, ACO

have potentials for mining transition rules of CA efficiently from large spatial

datasets because of the use of the ‘bottom-up’ approach. In this paper, transition

rules of CA are automatically derived from training data set using Ant-Miner. The
structure of the ACO-based geographical CA model is shown as figure 3.

First, land-use data were acquired through classification of Landsat TM images.

Then, a GIS package, ARCGIS, was used to derive a series of spatial variables that are

related to land development. For example, the distance variables were calculated by

using the Eucdistance function of ArcGIS. The number of developed cells in the 363

neighbourhood was counted using the Focal function of ArcGIS. The agricultural

suitability was calculated using the raster calculator function of ArcGIS. The future
state (land-use types) at T + 1 is determined by the existing state at T and a number of

spatial variables. The ACO–CA model consists of two parts: discovery of transition

rules using empirical data and the simulation based on these transition rules. Remote

sensing data will be utilized to monitor the growth of the city, and transition rules are

mainly discovered using Ant-Miner, which is implemented through Visual Basic 6.0

programming. The pseudo-code for discovering transition rules of CA is as follows:

ALGORITHM: A High-level Description of the Ant-Miner for
discovering transition rules of CA.

The original trainingSet
Discretization of the original TrainingSet
DiscoveredRuleList5[]/* rule list is initialized with an

emptylist */
WHILE (TrainingSet.Max_uncovered_cases)

Initialize all nodes with the same amount of pheromone
calculation the gij of the training data for all nodes

i51/* ant index */
WHILE(i,No_of_ants and m,No_rules_converg)

FOR j51 to No_of_attributes
Select a node of the attribute

NEXT j
Obtaining Rulei

Figure 3. Structure of ACO-based geographical CA model.
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rules pruning
IF (Rulei is equal to Rulei-1 THEN

m5m+1
ELSE

m51
END IF
pheromone update
i5i+1

LOOP
Select the best rule Rbest among all rules constructed by

all the ants;
Add rule Rbest to DiscoveredRuleList

TrainingSet5TrainingSet-{set of cases covered by Rbest}
LOOP

Unlike equation-based methods, the derived transition rules are easy for

understanding because of using explicit forms. The following is an example of

these explicit transition rules:

N Rule 1:

IF Distance to urban centres ,8 km,

Distance to trunk roads ,0.5 km,

The number of developed cells in the neighbourhood .5,

Land-use types5farmland.

THEN Development is allowed (confidence50.98).

N Rule 2:

IF Distance to urban centres .50 km,

Number of developed cells in the neighbourhood ,2,

Land-use types5forestland.

THEN Development is prohibited (confidence50.90).

The simulation program is developed by integration of ArcObjects with Visual

Basic 6.0. During the simulation, the state conversion of a central cell is determined

by these transition rules. However, it is noted that the observation interval (DT)

between remote sensing images is generally far greater than the iteration interval

(Dt) of CA simulation. It may be ideal if the observation interval (DT) is equal or

close to the iteration interval (Dt) so that derived transition rules can be used directly

in urban simulation (Li and Yeh 2004). As a result, it is necessary to determine the

amount of land-use conversion in the iteration interval (Dt) in the CA model.

The number of iterations (K) of CA model during the period of iteration is

represented as follows:

K~DT=Dt ð16Þ

The amount of land-use conversion (DQ0) is determined from remote sensing for the

larger observation interval (DT). If DT.Dt, only a portion of land-use conversion

took place in the iterationDt. The amount of land-use conversion between t and t + 1

is calculated as follows:

Dq0~DQ0=K ð17Þ

where Dq0 is the amount of land-use conversion for the iteration interval Dt.
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Urban evolution is affected by some degree of uncertainties. As a common

practice in urban simulation, a random variable is often incorporated to generate

realistic patterns (White and Engelen 1993, Wu and Webster 1998). There is a

concern if such probabilistic element can affect simulation accuracies. Fortunately,

stable patterns can be generated using these probabilistic CA models because the

uncertain parts are in small proportions, usually located in the fringe of urbanized

clusters (Yeh and Li 2006). In this paper, a random variable (c) is then used to

determine the locations of land-use conversion at a smaller interval. The following

additional rule is used to obtain the smaller portion of land use conversion:

IF x(i, j) should be converted according to the original transition rules, and x(i, j)

have not developed at t21 and c(b0 THEN x(i, j) will be developed at t

b0~
Dq0

DQ0
~

1

K
ð18Þ

where x(i, j) is the cell at location (i, j), DQ0 is the amount of land-use conversion

retrieved from the two images, and Dq0 is the amount of land-use conversion for its

iteration interval.

4. Application and simulation results

4.1 Study area and spatial data

The ACO-based CA model was applied to the simulation of urban development of a

fast-growing city, Guangzhou, in the Pearl River Delta of China. TM satellite

images in 1988, 1993, and 2002 are used to provide actual urban areas, which are

divided into the training data (TM data in 1988 and 1993) and the test data (TM

data in 2002). The training data are used to calibrate the model for obtaining

transition rules, and the test data are used to confirm the predictability of the

calibrated model. A series of spatial variables were chosen for the simulation of

urban development. They include various distance-based variables, neighbourhood

functions, and physical properties (table 1). Studies have shown that these variables

are closely related to urban development and land-use changes (White and Engelen

1993, Wu and Webster 1998). Therefore, the probability of urban development can

be estimated using these spatial variables. Some physical constraints can be

incorporated in the model by using GIS data. For example, slope and land-use type

are physical constraints for land development. There are usually low development

probabilities in the areas of rivers, steep slopes, and agricultural protection zones.

These constraints play an important role in the estimation of development

probability (White et al. 1997, Li and Yeh 2000). These spatial variables and

constraints were derived from remote sensing and GIS data. These spatial variables

Table 1. Spatial variables required for derivation of transition rules using Ant-Miner.

Distance-based variables Neighbourhood
Physical
properties

Distance
to city
proper

Distance
to town
centres

Distance
to
national
highways

Distance
to roads

Distance
to
railways

Distance to
expressways

Number of
developed cells
in the
neighbourhood

Slope Land-
use
type

(PropD) (TownD) (NatD) (RoadD) (RailD) (ExprD) (Nsum)
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were automatically discretized into a number of classes ranging from 5 to 10 based

on equations (2)–(8).

Stratified random sampling method is used to extract the samples from the

training data for deriving transition rules (Li and Yeh 2002). A total of 6500 samples

are randomly selected in the remote sensing images. The sample data set is further

divided into two groups—3500 as the training data set, and 3000 as the test data set.

The total amount of urban areas classified from these satellite images is used as the

global constraint for urban simulation.

4.2 Data-mining of transition rules and urban simulation

The spatial variables are treated as the attribute nodes of ant route, and the cell state

is treated as the class node of ant route. Prior to rule discovery, continuous spatial

variables should be discretized using Ant-Miner. Ant-Miner requires the users to

provide the following four parameters:

1. No_of_ants (number of ants): this is the maximum number of candidate rules

constructed during an iteration.

2. Min_cases_per_rule (minimum number of cases per rule): the minimum

number of cases that each rule must cover, which helps avoid overfitting the

training data.

3. Max_uncovered_cases (maximum number of uncovered cases in the training

set): the process of discovering rules is iteratively performed until the number

of uncovered cases is smaller than this threshold.

4. Max_iterations (maximum number of iterations): the program stops when the

number of iterations is more than this threshold.

The default parameter settings for the Ant-Miner are as follows:

No_of_ants5220, Min_cases_per_rule58, Max_uncovered_cases550, and

Max_iterations5200. The experiment indicates, among these four parameters, that

the number of ants (No_of_ants) and the minimum number of case per rule

(Min_cases_per_rule) are the two most sensitive factors in determining classifica-

tion results. The sensitivity of these two parameters is shown in figures 4 and

5. Classification accuracies improve with the increase in No_of_ants. This

Figure 4. Influence of No_of_ants on the performance of Ant-Miner.
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improvement stabilizes after No_of_ants reaches 220 (figure 4). The classification

accuracy is obtained by comparing the predicted class obtained from the rules and

the actual class from remote sensing. As shown in figure 5, the classification

accuracy of Ant-Miner improves when Min_cases_per_rule increases from 1 to 8,

but the predictive accuracy decreases after Min_cases_per_rule is greater than 8.

In this study, a total of 78 rules are generated from the training data by Ant-

Miner. It takes 4 minutes to complete the rule induction. A selected set of the

transition rules is listed in table 2.

The simulation of urban dynamics of Guangzhou during the period of 1988–1993

and 1993–2002 was implemented using the transition rules obtained from Ant-

Miner. The simulation starts from the initial land use, which is obtained by the

classification of TM data in 1988. The land use in 1993 and 2002 is then simulated

by running this model with 200 iterations and 400 iterations, respectively (figure 6).

Figure 5. Influence of Min_cases_per_rule on the performance of Ant-Miner.

Table 2. Part of the transition rules derived by using Ant-Miner.

Rule1:
IF

RoadD ,53 km and ExprD ,55 km and 18 km, TownD ,521 km and land
use5‘cropland’ and Nsum .53
THEN

Converted to urban development (confidence50.92)
Rule 2:
IF

NatD ,510 km and RoadD ,53 km and 5 km, ExprD ,520 km and 15 km, RailD
,518 km and TownD ,526 km and land use5‘orchard’ and Nsum .54
THEN

Converted to urban development (confidence50.86)
Rule 3:
IF

41 km, PropD ,545 km and 15 km, RoadD ,518 km and RailD .23 km and TownD
.24 km and Nsum ,52
THEN

Not converted to urban development (confidence50.83)
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5. Model validation and comparison

Validation is usually required if urban CA are applied to the simulation of real cities

(Li and Liu 2006). A simple method to assess the goodness-of-fit is to compare the

simulated patterns with the actual ones visually for validating CA (Clarke et al.

1997, White et al. 1997, Ward et al. 2000). The visual comparison indicates that the

simulated patterns fit well with the actual patterns classified from remote sensing

images (figure 6).

Visual comparison is a rather preliminary method for validating the simulation

accuracy. A further quantitative analysis is to produce a confusion matrix about the

concordance between the simulated development and the actual development. This

is based on the spatial overlay of these two patterns cell by cell. The simulation of

Figure 6. Simulated and actual urban development of Guangzhou in 1988, 1993, and 2002.
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the 1993 patterns can be compared with the actual 1993 patterns. This comparison is

a common practice for validating CA models. For example, Wu (2002) used a

logistic regression to calibrate development probability using the empirical land-use

data of 1973 and 1993. In the analysis of model performance, the land use of 1993

generated by simulation was compared with the actual land use of 1993.

Table 3 lists the comparison of these two patterns in 1993 and 2002 for this ACO-

based CA model. The total accuracies are computed from cross-tabulation, which

compares the goodness of fit on a cell-by-cell basis. The total accuracies are 83.3%

and 76.8%, and the kappa coefficients are 0.64 and 0.53 for the simulation of urban

development in 1993 and 2002 respectively. The simulated results in 1993 have a

better accuracy because the model is calibrated using the transition from 1988 to

1993 (table 3).

Structural conformity is also important in the assessment of simulation results

(Wu 2002). The indicator of Moran I can be used as the spatial statistics for

measuring land-use patterns. Moran I is a useful spatial indicator that can reveal the

degree of spatial autocorrelation (Goodchild 1986). The indicator is able to estimate

how close the simulated land-use pattern is to the actual urban development (Wu

2002). Table 4 shows the structural conformity using the indicator of Moran I. The

Moran I values are 0.627 and 0.687 for the simulation of land development in 1993

and 2002, respectively, using this ACO–CA model. They are 0.626 and 0.684 for the

actual land development in 1993 and 2002, respectively. This indicates that there is a

good conformity between the simulated and actual land development according to

the measurement of using Moran I.

The indicator of Moran I can only provide the aggregate information about

urban morphology. More characteristics of urban morphology should be measured

for the validation, including connectivity, shape, and fragmentation. Landscape

Table 3. Simulation accuracies of the ACO-based CA for Guangzhou.

1988–1993 (cells)

Simulated 1993 non-urban Simulated 1993 urban Accuracy

Actual 1993 non-urban 107 347 16 618 86.6%
Actual 1993 urban 16 150 55 821 77.6%
Total accuracy 83.3%
Kappa coefficient 0.64

1988–2002 (cells)

Simulated 2002 non-urban Simulated 2002 urban Accuracy

Actual 2002 non-urban 76 815 23 293 76.7%
Actual 2002 urban 22 253 73 575 76.8%
Total accuracy 76.8%
Kappa coefficient 0.53

Table 4. Assessment of the goodness of fit for the CA model using the Moran I index.

Time 1988 1993 2002

Actual 0.633 0.626 0.684
Simulated (ACO) 0.633 0.627 0.687
Simulated (See5.0) 0.633 0.621 0.680

1262 X. Liu et al.
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indices should be able to describe the characteristics of spatial patterns and provide

useful insights about urban morphology. We selected a set of metrics for measuring

the entire landscape, including number of patches (NP), the largest patch index

(LPI), edge density (ED), landscape shape index (LSI), and contagion (a measure of

landscape configuration). These metrics were computed from the rasterized land-use

maps using the Fragstats software package (McGarigal and Marks 1995). These

spatial pattern metrics capture ecologically relevant aspects of spatial pattern such

as fragmentation (NP, LPI, ED, and contagion), patch shape (LSI), and amount of

edges between contrasting patch types (ED and contagion) (Jenerette and Wu 2001).

The validation is carried out by examining the differences between the simulated

patterns and the actual ones classified from remote sensing (table 5). The

comparison indicates that there is a good conformity between the simulated and

the actual because each of these indices yields very close values for these two

patterns. For example, the differences are only 5.2% and 1.7% for the NP and LPI,

respectively.

This bottom-up approach is compared with a rule-based approach, See5.0

decision tree, which is a top-down algorithm. The See5.0 system is based on the

‘information gain ratio’ to determine the splits at each internal node of the decision

tree (Quinlan 1993). Transition rules derived from the See5.0 decision tree model are

used to simulate the urban development in the study area. The accuracy of this

simulation is calculated based on the cell-by-cell comparison (table 6). It shows that

the total accuracies of this simulation are 81.5% and 73.2%, and the kappa

coefficients are 0.60 and 0.46 for the simulation of urban development in 1993 and

2002, respectively. Comparison of tables 3 and 6 indicates that the ACO-based CA

model has a better simulation performance than the See5.0-based CA model. As

shown in table 4, The Moran I values are 0.621 and 0.680 for the simulation of land

development in 1993 and 2002, respectively, for the See5.0 model. The See5.0 model

has larger differences for the Moran I values than the ACO model. Therefore, the

proposed model shows a better performance in structural conformity than the

See5.0 model. Table 5 also shows that the ACO model also has better conformity

between the simulated and actual patterns in terms of landscape structure than the

See5.0 model. This could be attributed to the fact that the See 5.0 model gains

intelligence through heuristic evaluations of entropy at each decision point, but their

evaluations are typically static in nature. ACO, on the other hand, updates

Table 5. Landscape indices of the simulated patterns of CA compared with those of the
actual patterns derived from the TM data.

NP LPI ED LSI Contagion

1988,1993
Actual 3335 55.74 62.14 36.57 19.98
Simulated (ACO) 3160 56.72 59.39 33.72 21.44
Simulated (See5.0) 3084 57.13 58.42 32.47 21.85
% deviation (ACO) 5.2 1.7 4.4 7.8 7.3
% deviation (See5.0) 7.5 2.4 6.0 11.2 9.4
1993,2002
Actual 3119 43.88 61.36 34.99 19.26
Simulated (ACO) 2921 45.53 56.85 29.56 21.86
Simulated (See5.0) 2875 46.12 56.41 29.03 22.14
% deviation (ACO) 6.3 3.8 7.4 15.5 13.5
% deviation (See5.0) 7.8 5.1 8.0 17.0 14.9
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pheromone in time by using the bottom-up approach. The continuously updated

pheromone guides dynamic heuristic evaluations, thus minimizing the likelihood of

being trapped in local optima.

Recently, Pontius and Malanson (2005) pointed out that a predictive model

should be compared with a Null model of pure persistence (no change) for model

validation. A Null model is a kind of model that predicts nothing, as nothing

would change. The baseline is that a predictive model should have better

performances than a null model (Pontius and Malanson 2005). For instance, if

urban land use changes 15% in a period, a Null model of pure persistence would

be 85% correct based on the standard overall accuracy, while the overall accuracy

of a predictive model should be higher than 85%. However, the overall accuracy

has a bias because of the difference between the actual agreement and chance

agreement (Congalton 1991, Li and Liu 2006), which can be effectively explained

with Kappa coefficient. Kappa coefficient is calculated as follows (Congalton

1991):

Kappa~

M
Pr

i~1

xii{
Pr

i~1

xiz
:xzið Þ

M2{
Pr

i~1

xiz
:xzið Þ

, ð19Þ

where xii are the elements on the main diagonal of the error matrix, xi + is the sum

of the ith row of the error matrix, and x + i is the sum of the ith column of the

error matrix.

More meaningful results are produced by comparing the Kappa coefficient

between the Null model and a predictive model (table 7). As shown in tables 3 and 7,

in the period 1988–1993 the total accuracy of the ACO–CA model is only 1.1%

higher than that of the Null model, but the Kappa coefficient is 5% higher than that

of the Null model; in the period 1988–2002, the total accuracy of ACO–CA model is

9% higher than that of the Null model, while the Kappa coefficient is 18% higher

than that of the Null model. These results indicate that the ACO–CA model is rather

more accurate in simulating urban development.

Figure 7 further displays the spatial distribution of agreement and disagreement

between the simulated development and the actual in 1993–2002. Greyish blue,

Table 6. Simulation accuracies of the decision-tree CA model for Guangzhou.

1988–1993 (cells)

Simulated 1993 non-urban Simulated 1993 urban Accuracy

Actual 1993 non-urban 105 893 18 072 85.4%
Actual 1993 urban 18 100 53 871 74.9%
Total accuracy 81.5%
Kappa coefficient 0.60

1988–2002 (cells)

Simulated 2002 non-urban Simulated 2002 urban Accuracy

Actual 2002 non-urban 73 692 26 416 73.6%
Actual 2002 urban 26 079 69 749 72.8%
Total accuracy 73.2%
Kappa coefficient 0.46
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black, and red colours are used to indicate these three correct simulated categories,

‘non-urban to non-urban’, ‘urban to urban’, and ‘non-urban to urban’, from the

simulation model, respectively. White, green, and yellow colours are used to

represent these three incorrect simulated categories, ‘non-urban to urban’, ‘non-

urban to non-urban’, and ‘urban to non-urban’, from the simulation model,

respectively. Greyish blue, black, and green colours are used to indicate these three

Table 7. Accuracies of the null model of pure persistence for Guangzhou.

1988–1993 (cells)

1988 non-urban (no change) 1988 urban (no change) Accuracy

Actual 1993 non-urban 115 240 8725 93.0%
Actual 1993 urban 26 065 45 906 63.8%
Total accuracy 82.2%
Kappa coefficient 0.59

1988–2002 (cells)

1988 non-urban (no change) 1988 urban (no change) Accuracy

Actual 2002 non-urban 789 193 10 915 89.1%
Actual 2002 urban 252 112 43 716 45.6%
Total accuracy 67.8%
Kappa coefficient 0.35

Figure 7. Distribution of agreement and disagreement of the simulated patterns or urban
development of Guangzhou in 1993 and 2002.
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correct categories, ‘non-urban to non-urban’, ‘urban to urban’, and ‘non-urban to

non-urban’, from the Null model, respectively. The ACO–CA model has a higher

percentage correct than the null model because there is more red than green.

6. Conclusions

CA models have become a useful tool for exploring the evolutionary processes of

complex systems with a wide range of applications. Simulation of complex urban

systems is not only theoretically important but also of great practical value for

urban planning. The use of explicit transition rules can provide a useful insight for

understanding urban evolution. Mathematical equation-based transition rules are

not convenient to calibrate their parameters and interpret their meanings for large

complex regions.

This paper presents a new method of using ACO for acquiring explicit transition

rules of geographical cellular automata (CA), based on Parpinelli et al.’s (2002)

work. ACO is actually a complex multi-agent system, composed of a large number

of artificial ants with simple intelligence. Complex tasks, such as finding an optimal

route for seeking food, can be effectively fulfilled by the mutual cooperation

between ants. Our study has successfully applied ACO to construct CA transition

rules expressed as logical statements. Compared with Parpinelli et al.’s (2002) work,

our paper contributes three aspects:

1. A discretization technique is used to slice continuous spatial variables into a

number of intervals so that ACO can effectively discover CA transition rules

hidden in large datasets.

2. Parpinell et al. (2002) use information entropy to define the local heuristic

function. In this paper, a heuristic function based on the statistical attribute of

the data (frequency) is designed.

3. Satisfactory results have been obtained in solving travelling salesman

problems (TSP), data clustering, combinatorial optimization, and network

routing by using ACO algorithms. However, applying ACO to geo-simulation

has not been reported. Since ACO has strong swarm intelligence, it is

appropriate to ACO to discover transition rules of CA.

The ACO–CA model has been applied to the simulation of urban dynamics of

Guangzhou. Remote sensing images of different years are used as the observation

data for model calibration and validation. The stratified random sampling method

is used to extract a training data set, which is used by ACO to mine CA transition

rules automatically. The urban development of Guangzhou in the period of 1993–

2002 is simulated using this model. The comparison between the ACO method and

the See5.0 decision-tree method indicates that the ACO–CA model yields a higher

accuracy in simulating urban development. In the period 1988–1993, the total

accuracy of the ACO–CA model is 1.5% higher than that of the decision tree CA

model, and the Kappa coefficient is 4% higher than that of the decision tree CA

model. In the period 1993–2002, the total accuracy of ACO–CA model is 3.6%

higher than that of the decision tree CA model, and the Kappa coefficient is 7%

higher than that of the decision tree CA model. Furthermore, the ACO-based CA

model also has better conformity between the simulated and actual patterns in terms

of landscape structure than the decision tree CA model. With its strongly

robustness, self-adaptation, and positive-feedback mechanism, ACO is a powerful
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method that has great potential in discovering reliable transition rules for modelling

complex geographical phenomena.
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