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Research Article

Intelligent GIS for solving high-dimensional site selection problems
using ant colony optimization techniques

XIA LI*, JINQIANG HE and XIAOPING LIU

School of Geography and Planning, Sun Yat-sen University, Guangzhou 510275, China

(Received 19 October 2007; in final form 20 December 2007 )

This paper presents a new method to solve site selection problems using ant

colony optimization (ACO) techniques. Optimal spatial search for siting public

facilities is a common task for urban planning. The objective is to find N optimal

sites (targets) for sitting a facility so that the total benefits are maximized or the

total costs are minimized. It is straightforward to use the brute-force method for

identifying the optimal solution by enumerating all possible combinations.

However, the brute-force method has difficulty in solving complex spatial search

problems because of a huge solution space. Ant colony optimization can provide

a useful tool for site selection. In this study, the integration of ACO with

geographic information systems is proposed to include various types of spatial

variables in the optimization. A number of modifications have also been

introduced so that ACO can fit spatial allocation problems. The novelty of this

research includes the adoption of the strategies of neighborhood pheromone

diffusion, tabu table adjusting, and multi-scale optimization. This method has

been applied to the allocation of a hypothetical facility in Guangzhou City,

China. The experiment indicates that the proposed model has better performance

than the single search and the genetic algorithm for solving common site search

problems.

Keywords: Ant colony optimization; GIS; Artificial intelligence; Site selection

1. Introduction

Geographic information systems (GIS) is evolving by incorporating more artificial

intelligence in modelling for solving various decision-making problems. Intelligent

algorithms can be used in GIS to enhance its efficiency in formulating decisions,

such as complex spatial planning and resource optimization (Birkin et al. 1996). For

example, multi-objective hybrid meta-heuristic algorithms can be used to develop a

combinatorial optimization model for spatial zoning (Bong and Wang 2004).

Intelligent GIS can provide an effective tool for addressing many challenges of

including large solution space and multi-objectives in spatial simulation and

modelling using GIS.

There are numerous studies on solving the problems of site selection, which is an

important task for urban planning (Kariv and Hakimi 1979, Toregas et al. 1971,

Hansen and Mladenovic 1997). Siting facilities have long been a subject of interest in

the field of landscape architecture, although such problems can be quite ‘wicked’

(Church 2002). Location-allocation models that attempt to find the best sites for
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facilities are attractive for public facilities planning (Yeh and Chow 1996). The

objectives of site selection may include maximizing population coverage and

minimizing total travel distance (Rushton 1984). The facility location problem and

its variants, including most location-allocation and p-median problems, are known

to be NP-hard combinatorial optimization problems.

Site selection usually involves a large set of spatial variables. It is a complex

decision-making task because the solution space of identifying N optimal sites is

usually huge. Numerous possible combinations should be examined before finding

the best solution. Moreover, most of the traditional methods cannot easily handle

thousands of demand points and sites, especially when GIS is used to provide

detailed spatial locations and attributes (Church 1999). Some heuristic methods

have been developed to tackle these hard problems. They include local optimization

algorithms (e.g. the Gauss-Newton and the Levenberg-Marquart) (Zhan et al. 2003),

and global optimization algorithms (e.g. simulated annealing and genetic

algorithms) (Li and Yeh 2005).

Siting analysis with GIS began as early as in the 1970s (Kiefer and Robbins 1973,

Dobson 1979). Site selection, which is a basic task of GIS functionalities, is to find the

best sites for sitting a facility or a number of facilities. The search problems become

very complex because all these selected sites are related and should be evaluated

simultaneously for the optimization. The combined effects of all these selected sites can

be assessed using utility functions, which are subject to various goals. The objective is

to maximize these utility functions under the efficiency criterion. Spatial optimization

becomes difficult when a richer set of GIS and high-resolution remote sensing data are

available recently. For example, detailed population and transportation data can be

used to calculate the utilities using GIS databases. The exhaustive blind (brute-force)

method for solving optimization problems with high-dimensional spatial data is

infeasible because of a huge combinatorial solution space.

Heuristic search methods have been developed to deal with the problem of huge

solution space. The Monte Carlo optimization is a simple and efficient algorithm

among these methods. However, this method could get stuck on local suboptimal

solutions because a move is only made when a better solution is found (Openshaw

and Openshaw 1997). Recently, Li and Yeh (2005) have proposed a method to solve

the spatial allocation problems using genetic algorithms (GA). Unfortunately, GA

has problems in reaching the convergence if the number of targets is large. For

example, the optimal locations of more than 15 targets can hardly be found using

GA because the required length of chromosome is too long.

Intelligent algorithms should be developed within GIS to solve complex spatial

allocation problems. This study is to examine the potential of using simple ant

intelligence for solving complex site selection problems. Ant colony optimization

(ACO), which was first proposed by Dorigo et al. (1991) as a computation

algorithm, is composed of a set of cooperating artificial ants with simple intelligence.

Complex tasks, such as finding optimized route for seeking foods, are effectively

accomplished by the mutual cooperation between individual ants. During the

optimization processes, each ant agent makes a random choice according to local

information (pheromone). Although there is typically no centralized control

dictating the behaviour of the artificial ants, the accumulation of local interactions

in time often gives arise to a global pattern (Colorni et al. 1991). An ant colony

system is robust, and the integrity of the overall system is not easily affected by the

failure of one or several agents (Dorigo et al. 1996).

400 X. Li et al.
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Studies indicate that ACO has better performance than other nature-inspired

algorithms, such as simulated annealing and evolutionary computation, in solving

the travelling salesman problem (TSP) (Dorigo and Gambardella 1997). ACO is a

compromising optimization technique for solving complex combinatorial optimiza-

tion problems because of using swarm intelligence. TSP needs to examine the

combinations of various possible paths for constructing the shortest route. The

optimization is complex because the solution space is very huge. The mechanism of

pheromone updating is effective for finding the optimal solutions using cooperating

artificial ants.

Although ACO is very attractive for tackling complex and ill-defined spatial

decision-making problems, it has been mainly applied to the solution of travelling

salesman problems so far. In this research, a new method is proposed to integrate

ACO with GIS for solving high-dimensional site selection problems. Like TSP, site

selection is a kind of NP-hard combinatorial optimization problems. The

identification of the optimal combination of various conditions in site selection is

similar to the optimal path finding in TSP. Ant intelligence of collective behaviours

can be used to handle complex heterogeneous spatial data for the optimal site

search. Significant modifications will be made by incorporating the strategies of

neighbourhood pheromone diffusion, tabu table updating, and multi-scale search

into ACO. This is crucial for ACO to suit spatial optimization problems. This ACO

method will be also compared with other conventional methods, such as the single

search (SS) method and the GA method (Li and Yeh 2005), regarding their

performance in site selection.

2. Ant intelligence for solving spatial search problems

2.1 Ant intelligence for solving the TSP

Ant colony optimization is a type of computer algorithms for solving combinatorial

optimization problems using artificial intelligence and is devised by simulating ants’

behaviours of selecting the best route from a food source to their nest (Dorigo and

Gambardella 1997). This method is based on the positive feedback of artificial ants,

in which the coordination among ants is achieved by exploiting the stigmergic

communication mechanism. The pheromone provides the basic local information

for the communication between ants. Ants release and deposit pheromone on the

ground along their way, to guide others in finding foods efficiently. The amount of

deposited pheromone will become larger on a path if it is shorter (easier) for finding

foods. The larger the amount of pheromone, the more the ants will be attracted to

select this path. A more amount of pheromone is in turn deposited on this path.

Since the pheromone evaporates with time, the pheromone on a long path will

decrease when fewer ants select it. The communication between ants based on the

pheromone plays a key role in solving the path-optimization problem.

Figure 1 illustrates the process of seeking food by an ant colony, demonstrating

that simple swarm intelligence can solve complex optimization problems. This

swarm intelligence involves collective behaviour in decentralized systems, which are

made up by a population of simple individuals interacting locally with each other

and with their environment (Colorni et al. 1991). If there are no obstacles between

ant nests and food sources, the shortest route is in a straight line (figure 1(a)). The

attraction is that an ant colony with simple intelligence not only fulfills complex

tasks but also adapts to the changes of surrounding environment. For example, if

Ant intelligence for site selection 401
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there exists an obstacle occurring on the route, ants can find the optimal solution

based on simple swarm intelligence. At the beginning, ants select various routes by

identical probability (figure 1(b)). During their movement, ants will deposit

pheromone on routes that they passed by. Since the route F-G-H is shorter than

F-O-H, the ants selecting the route F-G-H will reach the food source sooner than

those selecting the route F-O-H. As a result, a larger amount of pheromone will be

deposited on H-G-F than on H-O-F. This will attract more ants to select the route

H-G-F (figure 1(c)). At the final stage, all the ants will choose the route H-G-F

because the pheromone on the longer route gradually disappears (figure 1(d)). The

above food seeking process based on positive feedback indicates that ACO is self-

adaptive.

The first experiment for testing ACO was the TSP (Dorigo et al. 2000). TSP is to

search for a closed tour of minimal length connecting N given cities. This ACO

method is to add new cities to a partial solution by exploiting both information

gained from past experience and a greedy heuristic (Dorigo and Gambardella 1997).

Each ant constructs a TSP solution in an iterative way. An ant chooses a city to visit

with a probability that is related to the amount of pheromone trail tuv(t) on the path

and the travel distance. A tabu list, tabuk, is used to prevent an ant going to the

visited cities again. This transition probability from city u to city v for the kth ant at

time t is thus given as follows

pk
uv tð Þ~

tuv tð Þ½ �a: guv tð Þ½ �bP

v [ allowedk

tuv tð Þ½ �a: guv tð Þ½ �b if v [ allowedk

0 otherwise

8
><

>:
ð1Þ

where tuv(t) is the amount of pheromone trail on edge (u,v), guv(t) is a heuristic

function related to the visibility (distance). The set, allowedk5{C–tabuk}, represents

the cities that can be visited next time without repetition.

The parameters of a and b control the relative importance of trail versus visibility

(distance). A larger value of a indicates that the trail intensity has more effect on the

probability. As a result, it is highly desirable for the probability if there is a lot of

traffic on edge (u,v). A larger value of b means that more effect will be put on the

visibility (distance) factor.

An ant has a higher probability of selecting the shorter route between two cities.

The heuristic function guv(t) is defined as the inverse of the distance between cities u

Figure 1. Ant intelligence of finding optimal route in seeking foods.
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and v

guv tð Þ~ 1

duv

ð2Þ

where duv is the distance between city u and city v.

At each iteration t, the trail density is updated according to the following formula

tuv tz1ð Þ~ 1{rð Þtuv tð ÞzDtuv tð Þ ð3Þ

Dtuv tð Þ~
Xm

k~1

Dtk
uv tð Þ ð4Þ

where r is a coefficient such that (1–r) represents the evaporation of trail between t

and t + n. Dtk
uv tð Þ is the quantity per unit of length of trail substance laid on path

(u,v) by the kth ant between time t and t + n.

Dtk
uv tð Þ is calculated using the following equation

Dtk
uv tð Þ~

Q
Lk

if the kth ant visits u, vð Þ
0 otherwise

(

ð5Þ

where Q is a constant, and Lk is the tour length of the kth ant.

2.2 Modified ACO for solving facility sitting problems

In this study, distributed ants’ intelligence is used to solve the hard optimization

problems of sitting facilities. The proposed method is devised according to the ACO

algorithm for TSP. In TSP, the question is to find a closed tour of minimal length

connecting N given cities. ACO is dependent on two terms, the trail density and the

visibility (distance), to choose the optimal route. The same concept is used to

develop the site search algorithm.

The optimal sites are heuristically identified based on the trail density and the

visibility (distance). The objective is to find the best N locations (targets) that can

produce the largest value of a utility function. The optimal site selection is fulfilled

using pheromone updating of ACO. In the initial stage, each cell will have an equal

amount of pheromone. A certain amount of pheromone will be deposited on the

cells visited by an ant. The combination of cells for siting the facility is evaluated

according to a utility function. It is expected that ants are likely to visit the selected

cells of higher utility values according to the greedy criterion. As a result, more

amount of pheromone will be deposited on these potential cells. This will in turn

attract more ants to visit them.

According to equation (1), the probability that a cell (x) can be selected for a visit

by the kth ant at time t is estimated as follows

pk
x tð Þ~

tx tð Þ½ �a: gx tð Þ½ �bP

x [ allowedk

tx tð Þ½ �a: gx tð Þ½ �b if x [ allowedk

0 otherwise

8
><

>:
ð6Þ

A heuristic function is defined to obtain better convergence rates during the

spatial search. It is assumed that a selected site should have a large population

Ant intelligence for site selection 403
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density. This can minimize the total transportation cost. Therefore, the heuristic

function gx(t) is defined as follows

gx tð Þ~pden xð Þ ð7Þ

where pden(x) is the population density at cell x.

In TSP, Lk represent the tour length of the solution for the kth ant. The tour

length of the solution is replaced by the total cost for solving site selection problems.

It is expected that the optimal solution should be able to produce the minimum

amount of transportation cost for visiting the N sites of the facility. Therefore, the
total transportation cost for visiting the N sites (targets) of the facility is given by the

following equation

Lktrans~
X

x

d xð Þpden xð ÞA ð8Þ

where Lktrans is the total transportation cost for the kth ant, d(x) is the Euclidian

distance between cell x and the closest target, and A is the area of each cell.

1/Lktrans can be regarded as the total utility for siting the N sites (targets) of the
facility. More spatial variables can be included to define the utility function based

on the domain knowledge. These variables may be related to the benefits and costs

for siting the facility in these locations. Various proximity variables (e.g. distances to

urban centres, roads, and airports) can be defined using GIS. Multi-criteria

evaluation could be used to combine all these various spatial factors. In this study,

the modified total transportation cost L’ktransð Þ for siting N targets is calculated by

the following equation

L’ktrans~w1

X

x

d xð Þpden xð ÞAzw2

XN

d~1

e{rDroad ð9Þ

where Droad is the distance between the selected site (target) and the closest roads.

The parameter of r is set to 0.1, and w1 and w2 are set to 0.8 and 0.2 respectively.

The first item is given with more importance.

It is also essential to define a diffusion strategy for pheromone updating for fitting
the site selection problems. The pheromone will evaporate very fast because the

selected cells only amount to a small percentage of all the cells. The positive

feedback will be too weak to play a role in the optimization. A modification is to

incorporate the strategy of neighborhood pheromone diffusion in defining

pheromone updating. This is conducted by incorporating a distance decay function

in equation (5). The revised equation is presented as follows

Dtk
x tð Þ~

Q

d xð Þz1½ �:L0
ktrans

If x falls within 5|5 window of a closest target at time t

0, otherwise

(

ð10Þ

Like TSP, this method uses a tabu list, tabuk, to mask out the selected cells which

should not be visited again next time. Moreover, this list also marks the restricted

cells (e.g. water and hills) which are excluded in site selection. This type of

constraints is prepared using the ArcGIS package.

Another important modification is to adopt a multi-scale approach, which can
alleviate the computational demand in large-scale spatial search. This includes two

phases of optimization. First, the identification of approximate locations of targets

404 X. Li et al.
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is carried out in a coarser resolution. It is expected that the exact locations should be

around these initial locations. Then the next round of optimization is implemented
by just searching the neighborhood around these initial locations in the original

resolution. This two-phase procedure of optimization can thus significantly reduce

the computation time.

The following is the computation algorithm for implementing this site selection

procedure:

ALGORITHM - A High-level Description of ACO for site selection

Set t50

For every cell(x) set an initial value t(0)5C and Dtx(0)50

/* The amount of pheromone is set to be the same for all the cells at

the beginning */

Do while (t,Maxnum_iterations and M,Num_convergence)

/* Maxnum_iterations represents the maximum number of iterations,

and Num_convergence is the total number

of iterations for examining the convergence */

For K51 to Num_of_ants

tabuk5NULL

For x51 to Num_of_sites /* Obtain N optimal site selection result*/

From all the cells, choose a cell as a potential sitting site with the

probability of pk
x tð Þ defined by:

pk
x tð Þ~

tx tð Þ½ �a: gx tð Þ½ �bP

x [ allowedk

tx tð Þ½ �a: gx tð Þ½ �b , if x [ allowedk

0 otherwise

8
><

>:

Include this cell into tabuk if selected

Next x

Evaluate the selection result found by the kth ant

If (This result is better than the best previous found result) then

Replace the best previous result with this one

End if

If (The result is the same as the previous one)

/* to examine the convergence rate*/

then

M5M + 1

Else

M50

End if

Next K

For every cell(x) /* Pheromone update */

For k51 to Num_of_ant

Dtk
x tð Þ~

Q

d xð Þz1ð Þ:L0
ktrans

, If x falls within 5|5 window of a closest target at time t

0, otherwise

(

Dtx tð Þ~Dtx tð ÞzDtk
x

Next x

Ant intelligence for site selection 405
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For every cell(x)

tx(t + 1)5r?tx(t) +Dtx(t)

Dtx(t)50

t5t + 1

Loop

Figure 2 illustrates the process of this heuristic spatial search based on pheromone

updating. In the initial stage, the amount of pheromone is set to the same for all the

cells. During the optimization process, a higher amount of pheromone will be

deposited on the cells if the siting can produce higher values of the total utility

1=L’ktransð Þ. At the final stage, the optimal N locations for siting the facility are

identified by these artificial ants according to the pheromone updating.

3. Implementation of ACO for site selection

3.1 Study area and model parameters

The study area is situated in the urban districts of Guangzhou, including the districts

of Haizhu, Yuexiu, Liwan, Tianhe and Baiyun. Since these districts are densely

populated, the provision of adequate facilities is essential for serving the basic needs

of the population. This proposed method is used to identify the N optimal sites of

siting a hypothetical facility (e.g. schools) for serving the population. This

optimization problem considers two spatial variables (population distribution and

transportation conditions) which are prepared using the ArcGIS package. The

population data available at street-blocks are obtained from the 2003 census of

Guangzhou. The pattern of population density in the study area is shown in figure 3.

Road networks are also retrieved from the GIS database (figure 4). These spatial

Figure 2. Optimal site selection according to the pheromone updating of ACO.

406 X. Li et al.
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Figure 3. The population density for the districts of Guangzhou.

Figure 4. Road networks of the study area from the GIS database.

Ant intelligence for site selection 407
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factors have formed a quite heterogeneous surface which requires sophisticated

heuristic methods to find the optimal solution.

The proposed model is developed using Visual Basic and ArcObjects of ArcGIS.

The use of ArcObjects can allow easy access to the spatial data and functionality of

GIS. Like many GIS-based site selection models, this model is performed based on

raster data format for modelling convenience. The original GIS vector (polygon)

data of the study area are converted into raster layers as the inputs to the modelling.

The raster layers have a resolution of 1006100 m with a size of 2506250 pixels.

Brute-force algorithms have difficulties in finding the optimal solution since the

process involves numerous possible combinations (Li and Yeh 2005). For example,

the number of the combinations is as large as
250|250ð Þ!

10!| 250|250{10ð Þ! ~2:50|1041 if a

brute-force algorithm is used to find the optimal solution of identifying 10 targets.

This ACO method involves some parameters which could have impacts on

simulation results. In equation (1), the parameters of a and b control the relative

importance of trail versus visibility (distance). These parameters should be defined

before running the simulation. Since the simulation itself will take time to complete, the

enumeration of all possible combination of a and b is impossible for examining their

effects. Alternatively, a two-step procedure is proposed to determine the suitable values

of these parameters for site selection. The first step is to examine the influences of a
(a50.5, 1.0, 1.5, 2.0, 2.5) when b is initially set to 0.5. Table 1 lists the average utility

value for each combination by repeatedly running this ACO model 10 times. It is found

that the optimal average utility value is obtained when a falls within the range of [1, 2].

A large value of a will let the model get stuck on suboptimal solutions because the

convergence rate is too quick. The suitable value of a is then set to 1.5. The second step

is to examine the influences of b (b50.5, 1.0, 1.5, 2.0, 2.5) when a is set to its optimal

value (a51.5). It is found that the optimal average utility value is obtained when b falls

within the range of [0.2, 1.0]. A large value of b will also let the model get stuck on

suboptimal solutions because the convergence rate is too quick. Therefore, the best

combination of a and b is 1.5 and 0.6 according to this experiment.

3.2 Spatial search using a multi-scale ACO approach

Site selection usually needs to handle a large size of spatial data for solving a

practical problem. The solution space is still too large for the distributed ACO

algorithm. A multi-scale search is required for reducing the computation time. This

procedure can be illustrated in the search for six optimal sites for siting a facility

(e.g. schools) using raster GIS data (figure 5). The raster GIS data include the grids

Table 1. Search for suitable values of importance of trail (a) and importance of visibility (b).

Step 1
Importance of trail (a)

Importance of visibility (b)50.5

0.5 1.0 1.5 2.0 2.5 3.0
Average total utility
value (1026)

7.77 8.19 8.18 8.17 8.04 7.93

Stabilized iterations 374 459 377 387 483 188

Step 2
Importance of trail (b)

Importance of visibility (a)51.5

0.0 0.2 0.5 1.0 1.5 2.0
Average total utility
value (1026)

8.05 8.15 8.16 8.17 8.08 7.80

Stabilized iterations 442 388 377 396 310 141

408 X. Li et al.
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of population density and transportation with the resolution of 1006100 m. The

original resolution was converted to the coarser resolution of 5006500 m. As a

result, the data volume of the new layers only amounts to 1/25 of the original one.

ACO can thus have much faster computation speed using these down-scaling data.

The initial coordinates for the six targets were identified on the grids of

5006500 m resolution. The exact locations for these targets need a further step of

the search on the grids of 1006100 m resolution. However, the new search is only

limited to a small neighborhood around these initial targets. A window of

565 pixels around the coarse locations was used for executing this ACO algorithm

again. This experiment indicates that this multi-scale search can effectively reduce

the data volume and make the computation feasible for solving practical problems.

This ACO method has been compared with the SS algorithm and GA to evaluate

its performance in site selection. The SS algorithm is similar to the bombing strategy

described by Openshaw and Steadman (1982). This algorithm can be used to find N

sites (targets) for siting a facility by assessing each site separately. Although the

maximum utility value can be obtained for each independent site, the total utility

value is not maximal without considering the combined effects of these sites. As a

result, this SS method cannot guarantee that the solution will produce the maximum

population coverage. The only advantages of this method are its model simplicity

and fast calculation speed. However, its effectiveness of producing the optimal

results is in doubt for solving high-dimensional problems.

An alternative method is to apply the GA method for siting facilities optimally (Li

and Yeh 2005). This GA method has the advantages of dealing with the combined

effects of all targets using chromosomes. For example, the GA method can generate

the best utility values with 18.2% larger than the SS method for allocating 10 targets

of a facility (Li and Yeh 2005).

Figure 5. A multi-scale approach of using ACO for site selection.
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The performance of these three methods, the SS, GA and ACO, is compared

based on the total utility 1=L’ktransð Þ using the same set of data. It is expected that a

better method should generate a higher utility value. Site selection usually involves

very large volumes of spatial data and needs a very long time for the optimal search.

For example, the SS algorithm needs to calculate 625000 times of the utility function

if the image size of the study area is 250 columns6250 rows and the number of the

targets is 10. The search takes 83 h using a computer with a Pentium IV 3.2 GHz

CPU. Therefore, the comparison was carried out using a coarser resolution of

5006500 m.

Table 2 compares the total utility values of these three methods at this coarser

resolution. It is found that the proposed ACO method has 2.7–5.5% improvement of

the total utility value over the SS method. However, the ACO method only has

slight improvement of the total utility value over the GA method. Figure 6 further

compares the convergence rates of the GA method and the ACO method for finding

the optimal sites in terms of the utility function. Both methods can quickly reach the

convergence, but the ACO method has better performance.

Table 2. Comparison of the improvement of the total utility value between the SS, GA and
ACO methods in site selection based on the resolution of 5006500 m.

Number of targets 2 4 6 8 10

Total utility value (1026)
SS 3.7 5.0 6.0 6.9 7.7
GA 3.9 5.2 6.2 7.1 8.0
ACO 3.9 5.3 6.3 7.2 8.2
(ACO-SS)/SS 5.3% 5.5% 2.7% 3.9% 2.8%
(ACO-GA)/GA 0.0% 0.4% 1.3% 1.2% 2.5%

Figure 6. The convergence rate of the GA and ACO methods for finding the optimal sites in
terms of the utility function.
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Table 3 lists the computation time of these methods for the site selection. The

ACO method needs much less computation time than both the SS method and the

GA method. The computation time of this ACO method only amounts to 12.5–

29.5% and 8.8–20.3% of those of the SS method and the GA method respectively.

The proposed multi-scale strategy can be adopted for solving real-world problems

which usually involve a large size of spatial data. In this study, the original

resolution of these raster data is 1006100 m and the targets to be identified range

from 1 to 30. The initial site selection is carried out in the grids of 5006500 m

resolution. The computation time is significantly reduced since the data volume is

reduced to 1/25 of the original. It is expected that the accurate locations for N

targets should be around these initial selected sites. Therefore, the exact locations

can be further identified using a 565 window around these initial sites. The

experiment indicates that the multi-scale ACO has many more advantages of

reducing the computation time than the SS, genetic algorithms and the single ACO

(Table 4). Although the SS is very simple, it still needs to take very long time to

complete the cell-by-cell search if the space contains a large number of cells. Figure 7

illustrates the final results for siting 10 and 30 targets of the facility optimally under

the complex distribution of population and transportation conditions.

A further experiment was carried out to examine if this multi-scale ACO has

accuracy loss due to the data reduction. The validation is based on the difference of

the utility value between the multi-scale ACO method and the single ACO method.

It is expected that these two methods can produce the same value or very close

values of the total utility. A small sub-area was used for the comparison with the

number of targets ranging from 1 to 16. Table 5 is the comparison of their total

utility values. It is found that these two methods can obtain almost the same result

in terms of the utility value. When the number of targets is small (e.g. N,5), these

two methods have the same values of the total utility. Therefore, this multi-scale

search can produce a satisfactory accuracy for finding the optimal sites using much

less computation time.

Table 3. Comparison of the computation time between the SS, GA and ACO methods based
on the resolution of 5006500 m.

Number of targets 2 4 6 8 10

Computation time (s)
SS 32 95 198 333 525
GA 45 138 247 419 832
ACO 4 28 41 54 73
ACO/SS 12.5% 29.5% 20.7% 16.2% 13.9%
ACO/GA 8.9% 20.3% 16.6% 12.9% 8.8%

Table 4. Comparison of the computation time for identifying 10 targets using the SS, GA and
ACO methods for the study area.

Algorithm Computation time (h) Total utility value (1026)

SS 82.5 7.7
GA 5.2 8.0
single ACO 2.1 8.2
multi-scale ACO 0.5 8.2
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Like other heuristic methods, this ACO method may be affected by some
randomness. It is necessary to carry out many simulations to see if ACO can

produce stable results. Figure 8 shows the 10 simulations of ACO and their overlaid

Figure 7. Identifying 10 and 20 optimal sites for siting a hypothetical facility using ACO.
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Table 5. Comparison of the total utility value between the multi-scale ACO method and the
single ACO method.

Number
of targets

multi-scale
ACO

single
ACO

multi-scale/
single

Number of
Targets

multi-scale
ACO

single
ACO

multi-scale/
single

Total utility values
(1026)

Total utility values
(1026)

1 0.609 0.609 1.0000 9 1.772 1.771 1.0006
2 0.786 0.786 1.0000 10 1.858 1.860 0.9989
3 1.028 1.028 1.0000 11 1.967 1.967 1.0001
4 1.176 1.176 1.0000 12 2.064 2.061 1.0013
5 1.310 1.310 1.0000 13 2.149 2.148 1.0007
6 1.452 1.452 1.0003 14 2.230 2.230 0.9997
7 1.567 1.567 0.9998 15 2.322 2.323 0.9996
8 1.666 1.666 1.0000 16 2.400 2.400 0.9998

Figure 8. Overlay of the 10 simulation results of the ACO method.
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results. The good overlapping indicates that this ACO method can produce quite

stable simulation results. Figure 9 is the 10 simulations of GA and their overlaid

results. It has poorer overlapping results, compared with the proposed method.

Therefore, ACO can produce much more stable simulation results than GA for site

selection. Table 6 further compares the total utility value and the standard deviation

of these 10 simulations for these two methods. ACO can produce higher utility value

and smaller standard deviation (SD). This means that ACO can have better

capability to avoid the trapping in suboptimal solutions.

Figure 9. Overlay of the 10 simulation results of the GA method.

Table 6. Total utility value of 10 simulations of ACO and GA (1026).

No. 1 2 3 4 5 6 7 8 9 10 Mean SD

ACO 8.20 8.09 8.19 8.11 8.18 8.19 8.18 8.19 8.20 8.20 8.17 0.039
GA 8.07 8.10 7.84 8.04 7.93 7.96 7.93 8.08 7.96 8.05 8.00 0.084
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4. Conclusions

Facility planning usually needs to determine N optimal sites for siting a facility. One

of the objectives is to generate the maximum utility value by considering the

combined effects of these sites subject to various spatial variables. The solution

space grows exponentially with the increase in the size of study areas and the

number of spatial variables. Enumerative techniques, based on the enumeration of

the partial solutions, have difficulties in solving this problem. Heuristic methods

have been developed to improve the performances of spatial search. In this study, a

heuristic method for site selection has been proposed based on ACO techniques. The

novelty of this proposed method includes: the integration of ACO with GIS; the

adoption of the strategies of neighborhood pheromone diffusion; the definition of

tabu table with constraints and multi-scale searches.

First, integrating ACO with GIS is important for solving practical problems in

site selection. The integration allows these two techniques to be mutually benefited

from each other. ACO provides an efficient distributed computation algorithm

while GIS provides useful spatial information. Second, ACO is modified to address

spatial influences in updating pheromone. The strategy of neighborhood pheromone

diffusion is adopted to keep pheromone from evaporating too fast. This strategy is

important for site selection because the target cells are very few compared to all the

cells. Moreover, a tabu table is defined to exclude not only the selected sites, but also

some restricted ones based on GIS data. Last, a multi-scale search procedure is

proposed to reduce computation time for handling real sets of spatial data. The

procedure includes two phases of optimization. ACO is first used to find

approximate locations for sitting a facility using a coarser resolution. Then the

next search for the finer locations is just carried out within a window of these

approximate locations using the original resolution.

This multi-scale ACO was applied to the spatial search of sitting a hypothetical

facility in Guangzhou. Experiments indicate that this multi-scale ACO method

can produce similar results but use much less computation time, compared with

the single ACO method. Good position accuracies can be maintained although

this approach is based on an approximation method. This method has better

performance than conventional methods, such as the SS method and the GA

method, for solving site search problems. ACO has yielded the utility

improvement of 2.7–5.5%, compared with the SS method. Although ACO has

slight improvement of the total utility value over the GA method, the former is

able to reduce computation time significantly. Its computation time only amounts

to 12.5–29.5% and 8.8–20.3% of those of the SS method and the GA method

respectively.

Like other heuristic search, such as genetic algorithms, the proposed ACO

method could have a chance to get stuck on suboptimal solutions. However,

comparisons indicate that this ACO method is less likely to trap in suboptimal

solutions than the GA method. Many simulations should be carried out to reduce

the chance of getting stuck on suboptimal solutions. Further studies are also needed

to examine if the proposed multi-scale approach makes reaching a suboptimal

solution more likely.
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