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Mangrove wetlands have been rapidly diminishing because of human pressures

worldwide. The Guangdong Province in South China, which has the largest area

of mangrove wetlands in the nation, is under severe threat as a result of rapid

urbanization and economic development. In this paper, comparisons were made

between optical Landsat TM images and Radarsat fine-mode images for

estimating wetland biomass. Regression and analytical models were used to

establish the relationships between remote sensing data and wetland biomass.

The optimal parameter values for the analytical model were determined using

genetic algorithms. Experiments indicate that the models using Radarsat fine-

mode images have significant accuracy improvement in terms of Root Mean-

Square Error (RMSE) whereas the use of the single Normalized Difference

Vegetation Index (NDVI) may produce serious errors in biomass estimation. The

Radarsat images can obtain more accurate trunk information about mangrove

forests because of higher resolution and side-looking geometry. The use of

genetic algorithms can help to decompose backscatter into vegetation and soil

backscattering, which is very useful for ecological modelling.

1. Introduction

In many coastal areas of the Guangdong Province in South China, mangrove forests

have been disappearing very rapidly because of reclamation projects in recent years.

The rapid development of a lucrative shrimp industry along the coastal areas of the

Province, especially in the Pearl River Delta, is also one of the major causes for the

loss of mangrove forest. Protecting mangrove wetlands in the Guangdong Province

has attracted the attention of international communities. Recently, the United
Nations Environment Programme and Global Environment Facility (UNEP/GEF)

has initiated a programme for rehabilitating the mangrove wetlands in the eastern

coastal areas of the Guangdong Province.

Field investigations to obtain information about wetland biomass are very tedious

and time-consuming. There is a lot of literature on the development of

methodologies for vegetation studies using remote sensing (Richardson and

Wiegand 1977, Clevers 1988, Huete 1988). Many methods have been proposed for
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7 estimating and mapping forest biomass from remotely sensed data (Huete 1988, Li

1994, Mather 1999). Both optical and radar remote sensing data can be used for

biomass mapping.

A variety of vegetation indices have been developed for retrieving vegetation

information from optical remote sensing. The most common measurement is the

Normalized Difference Vegetation Index (NDVI) (Mather 1999, Foody et al. 2001).

The index is based on the characteristics that vegetation has noticeable absorption in

the red and very strong reflectance in the near-infrared. Different types of vegetation

often show distinctive variability from one another due to such parameters as leaf

shape, spacing of the plants, water content, and soil background.

In tropical and subtropical areas, conventional optical remote sensing has

difficulties in monitoring the growth cycle of wetland vegetation because of frequent

cloud cover in summer months. Additionally, optical remote sensing may have

drawbacks in biomass estimation. It has the problem of signal saturation because of

using a shorter wavelength. Radar remote sensing, which can be used under cloudy

conditions, has a great potential for wetland studies. Many studies indicate that

synthetic aperture radar (SAR) images can be used for classifying land use types and

estimating vegetation biomass (Dobson et al. 1996, Pierce et al. 1998, Magagi et al.

2002).

There is increasing literature on the application of SAR technologies for the

quantitative investigation of vegetation biomass (Wigneron et al. 1999, Magagi et al.

2002). It is possible to measure the biophysical properties of forests, such as basal

area and tree height (Le Toan et al. 1992, Dobson et al. 1995), tree diameter and

density (Le Toan et al. 1992, Wang and Dong 1997) from radar remote sensing. The

acquisition of remote sensing data during growing seasons allows better crop type

determination and yield (productivity) estimation. Successful applications have been

reported in the studies of crop biomass (Le Toan et al. 1997, Wigneron et al. 1999),

forest structures in wetland (Townsend 2002), biomass of boreal forests (Pulliainen

et al. 1996), biomass of mangrove forests (Mougin et al. 1999), and biomass of

wetland forages (Moreau and Le Toan 2003).

These studies have found strong positive correlations between biomass and

backscatters of SAR images. SAR backscatters increase linearly with increasing

biomass until a saturation level is reached. Radar remote sensing can be applied to

the quantitative analysis of wetland biomass (Mougin et al. 1999, Baghdadi et al.

2001, Townsend 2002, Moreau and Le Toan 2003).

For biomass estimation of forests, it is important to obtain the vertical

information of vegetation because most biomass is held in trunks and large

branches. Usually, trunk components may contain over 60% of the above-ground

biomass (Bergen and Dobson 1999). The penetrability of radar remote sensing can

help to obtain the trunk information of forests. Penetrability is different for various

radar wavelengths. For example, L and P band radar penetrate deeper than K or X

bands. Penetrability is rather weak for Radarsat images (C band) because of its

shorter wavelength. However, the side-looking geometry of Radarsat images can

greatly enhance the subtle topographic features that aid in the interpretation. It is

expected that this feature can also help to obtain more trunk information for

vegetation and improve the accuracy of biomass estimation.

The objective of this study is to compare the capabilities of radar remote sensing

and optical remote sensing for estimating mangrove biomass. The comparison is

useful for identifying the best method for biomass estimation. Regression and

5568 X. Li et al.
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7 analytical models are compared based on the NDVI of Landsat TM images and the

backscatter of Radarsat images. The analytical model should be useful for providing

a clear structure of backscattering. However, the parameter values are difficult to

define by traditional methods. In this study, genetic algorithms are used to find the

optimal parameter values for the analytical model. Many studies have shown that

the integration of images of different sensors can improve the accuracy of image

analysis (Metternicht and Zinck 1998, Chena et al. 2003). The integration of optical

remote sensing with SAR images is also tested to see if the accuracy of biomass

estimation can be improved.

2. Study area and data collected

2.1 Study area

Half of the mangrove wetlands in China are situated in the Guangdong Province.

The loss of wetlands in the Province is very fast because of rapid urbanization.

According to field investigations, the area of mangrove forests had reduced from

8000 ha2 in the 1950s to only 300 ha2 recently in the eastern coast of the Province,

and from 54, 000 ha2 in the 1950s to 12, 000 ha2 recently in the western coast of the

Province (Wang and Chen 1998). However, accurate and updated information

about the wetlands in the Guangdong Province is unavailable, especially the

mangrove forests. Conventional field investigations have difficulties in collecting

such information. Therefore, remote sensing should be a useful tool for monitoring

mangrove forests in this region.

The methodology is tested on Qiao Island, Zhuhai City, the Pearl River Delta

(figure 1). The island has an area of about 24 km2. It is within the subtropical region,

with an average temperature about 22–23uC and an annual precipitation of about

1700–2200 mm. The climate is very suitable for the growth of mangrove forests.

However, conventional optical remote sensing has difficulties in monitoring the

temporal vegetation conditions because the region is frequently covered by clouds.

China used to have three large sites of mangrove wetland, one of which was

situated in Zhuhai City. However, the reclamation projects for the development of

the shrimp industry have resulted in the rapid loss of mangrove forests in this region.

For example, Qiao Island had lost about 1360 ha of mangrove forests before 1999

according to government reports. In 1999, there were only about 32 ha of mangrove

forests left on the island. Since 1999, Zhuhai City has adopted the initiatives of

rehabilitating the ecological system by planting mangrove trees on the island. The

area of mangrove forests has increased from 32 ha to 533 ha since then.

The mangrove forests are mainly situated on the northwestern part of the island.

The common mangrove types in the study area include: Kandelia candel-Aegiceras

corniculatum-Acanthus ilicifolius, Aegiceras corniculatum-Phragmites communi,

Acanthus ilicifolius, Sonneratia apetala, Bruguiera gymnorrhiza-Heritiera littoralis.

Sonneratia apetala, a fast-growing mangrove species, was first introduced from

Bangladesh to Hainan Island, China in 1985. It was then transplanted from Hainan

Island to the coastal areas of Guangdong in 1993. The growth rate of S. apetala is

very high. The mean height is about 3.5 m for a 2-year tree, and about 11.5 m for a

3.5-year tree. The patch size is usually larger than 20 m620 m, which can be

discerned from Radarsat images. The canopy is usually not completely close and

with the presence of standing water on the ground. Therefore, the side-looking

Radarsat data to estimate mangrove biomass 5569
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geometry of Radarsat is useful for obtaining the trunk information for the

mangrove forests.

Sonneratia apetala was planted to control the growth of Spartina anglica. Spartina

anglica, an herbaceous species that flourishes in the region, originated from the

south coast of Britain. In 1963, it was transplanted to the coast of Jiangsu province

and later transplanted to the coasts of other provinces of China. The introduction of

S. anglica was found to be a major mistake for wetland conservation because of its

uncontrolled growth. Its invasion into the mangrove territory has caused the death

of a large area of the mangrove forests. In the study area, S. anglica are situated in

the frontier of the wetland, near the sea. In order to control the growth of S. anglica

and protect the mangrove trees, local governments have transplanted a fast growing

mangrove species, S. apetala. According to field observation, the introduction of

S. apetala seems to have controlled the growth of S. anglica.

2.2 Remote sensing data and image processing

A Radarsat image taken on 15 May 2004 was acquired for estimating the mangrove

biomass for the study area. The C-band SAR image is in the ascending orbit and

with the fine-mode (F2). It has a resolution of 8.3 m68.4 m and a swath width of

50 km on the ground. The average incidence angle is within the range 37–41u. The

weather was cloudy during the acquisition of the SAR image. An optical remote

Figure 1. Location of the study area in the Pearl River Delta, Guangdong Province, South
China.

5570 X. Li et al.
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7 sensing image of Landsat 5 TM of similar acquisition time was also used for

comparison. Table 1 lists these remote sensing data.

Image processing procedures were carried out before these data were used for the

wetland analysis. The first step was to convert the original digital number (DN) of

the SAR images into the backscatter coefficient using the PCI image processing

software. The backscatter coefficient can represent the original signal amplitudes

more accurately and thus produce more plausible results than the original digital

number in many applications.

It is important to remove noise in the SAR images since they are affected by a

kind of noise called speckle. The Frost adaptive filter was used to preserve edges

while significantly reducing the noise in homogenous regions (Frost et al. 1982). A

363 filter was applied for the smoothing. Most of the noise was removed after the

filtering using the Frost algorithm.

Co-registration was performed to register the SAR and Landsat TM satellite

images to the survey maps by using control points. The geometry of the original

Radarsat data was ground range. The map projection of the survey maps is

Universal Transverse Mercator. The correction transformed the coordinates of these

images into the Chinese Coordinate System (C80). Around 30 control points were

selected on each image to carry out the polynomial transformation for the geometric

correction. The control points were selected based on easy identification. For

example, the intersections of roads or the corners of fishponds were usually selected

as the control points. These control points were evenly distributed over the whole

region to ensure accurate registration. The second order of the polynominal

transformation was used for the correction. The co-registration error was 0.6 pixels

on average.

2.3 Training data

Field investigation was carried out to collect the training data during the same

period as acquiring the SAR image. The training data were used to establish the

models for biomass estimation. Biomass is defined as dry weight, which is usually

estimated by measuring tree diameter, or sometimes diameter and height. Empirical

functions are frequently employed to calculate (estimate) biomass. Researchers

studying tree volume have found very strong relationships between volume and the

size of the bole at a relative height (Foody et al. 2001, Brown 1997). Breast height is

a convention with a long history of use within forestry practice. In China, the breast

height is 1.3 m for most of the applications.

In this study, the mangrove biomass measurement for the training data is based

on the nondestructive double-sampling method (Bonham 1989). One hundred

sampling sites were randomly selected in the study area. The diameter (perimeter) at

the breast height for each tree was measured manually and the number of mangrove

forests within a plot of 10 m610 m was counted in each sampling site. The empirical

Table 1. Remote sensing data for the study area.

Remote sensing data Acquisition date Spatial resolution

Landsat TM 13 June 2004 About 30 m
Radarsat F2 mode 15 May 2004 About 8 m

Radarsat data to estimate mangrove biomass 5571
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7 equation for each mangrove tree in this study area is as follows:

Ba~3:396|10{2|D2
h; ð1Þ

where Ba is the dry biomass of a mangrove tree (kg), and Dh is the diameter (cm) at

breast height (1.3 m). The biomass per square metre can be summed up by

multiplying the biomass with the total number of trees within the area.

The biomass for the herbaceous species, such as Spartina anglica, was also

measured at the field. A Global Positioning System (GPS) was used to record the

coordinates of each measurement location so that the field investigation data can be

associated with the remote sensing data for establishing the biomass estimation

models.

Soil wetness was measured using the TDR 300 Soil Moisture Probe. The sampling

sites are generally very saturated or completely covered by water. The wetness is

usually greater than 90%. Radar signals can be more related to biomass because

other influences of background can be minimized under such water conditions.

3. Methodology

3.1 Regression models using NDVI and backscatters

A simple way to estimate mangrove wetland biomass is based on the common

NDVI index of optical remote sensing. The index is presented using the following

formula (Mather 1999):

NDVI~
near IR band� red band

near IR bandzred band
: ð2Þ

Studies indicate that the index is effective for the monitoring of biophysical

variables of temperate vegetation (Foody et al. 2001). It is highly related to net

primary productivity (Goward et al. 1985). A simple linear regression model can be

used to represent the relationship between vegetation biomass and reflectance values

(Hansen and Schjoerring 2003):

VB~a0za1 NDVI; ð3Þ

where VB is vegetation biomass, and ai is the coefficient for each term.

A log/exponential transformation may be used before the regression analysis is

carried out for correcting nonlinearity in the relationship (De Jong et al. 2003). The
regression model is then revised as follows:

VB~a0 e a1 NDVI: ð4Þ

However, the log-transformation may not fit the nonlinear relationship in some

situations. Polynomial models may be required to deal with complex nonlinearity.
For example, the 2nd order polynomial equation is represented as follows:

VB~a0za1 NDVIza2NDVI2: ð5Þ

A drawback with NDVI is that the index mainly reflects the crown information of

vegetation. The vertical properties (e.g. tree height) cannot be retrieved by this
index. It has frequently been applied less successfully to tropical forests since it loses

sensitivity to biophysical properties at high biomass amounts for tall vegetation

5572 X. Li et al.
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7 (Sader et al. 1989, Foody et al. 1996). The lack of cloud-free data is another

common problem in tropical and subtropical regions.

Radar remote sensing can overcome such limitations. When SAR images are used

for biomass estimation, backscatter coefficients are frequently used to establish the

relationship between biomass and remote sensing data (Ribbes and Le Toan 1999,

Ranson and Sun 2000). The above simple linear, log/exponential and polynomial

transformation can also be applied to the biomass estimation by using backscatter
coefficients.

3.2 An analytical model using genetic algorithms

The above regression models require substantial empirical data to determine the
coefficients for these variables. They cannot differentiate the influences of each

component (e.g. soil background and vegetation). Analytical models may be more

plausible because they can provide clear structures for understanding the

mechanisms of backscattering interactions.

An analytical backscatter model may be defined based on the assumption that the

backscattering coefficient (s0) for mangrove wetlands can be decomposed into two

parts: (1) the backscattering component from the vegetation canopy; (2) the

backscattering component from the ground (including the trunk-ground and surface

vegetation). Backscatter can then be calculated using the following equation:

s0~s0
vegzt2s0

gro; ð6Þ

where s0
veg is the backscattering coefficient from the vegetation canopy, t is the

vegetation transmissivity, and s0
gro is the backscattering coefficient from the ground.

Equation (6) can be further revised as follows (Fransson and Israelsson 1999,

Kurvonen et al. 1999):

s0~cvegcosa(1{e�2kVB=cosa)zcgrocosae�2kVB=cosa; ð7Þ

where cveg is a backscattering coefficient assumed to be independent of the incidence
angle (a) and can be regarded as the saturated backscattering coefficient of a dense

forest. cgro is the backscattering coefficient of the ground without vegetation cover. k
is the coefficient of attenuation, which determines the rate by which the sensitivity to

stem volume change diminishes.

This analytical model provides a useful structure for understanding the

backscattering mechanisms. Empirical data are required to obtain the parameter

values of the analytical model. Conventional regression analysis can be applied

under the conditions that this model cannot be too complex. It is difficult to

determine the parameters for complex nonlinear equations. Genetic algorithms

(GAs) should be a much better option for solving this complex analytical model.

In a GA program, there are two basic operations to the evolutionary approach—

crossover and mutation (Goldberg 1989, Holland 1992). The ‘crossover’ operator

exchanges genes between two parents to form two offspring that inherit the traits of

both parents. The ‘mutation’ operator alters one or more genes of a single parent.

Each individual (a solution) corresponds to a fitness value. The evolutionary process

is mainly based on the assessment of each individual using the fitness functions. The

‘survival of the fittest’ regime is crucial for reaching an optimum or near-optimum
solution. The search process is intelligent because of the use of the evolutionary

approach.

Radarsat data to estimate mangrove biomass 5573
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7 The search procedure will stop when the improvement of the best fitness is

insignificant. The optimal parameter values for equation (8) can be determined

based on this evolutionary approach. The rules for terminating the program are:

IF F (tz1){F (t)vT

THEN The search will be automatically terminated

where T is a small value.

4. Results

4.1 Comparison of the use of NDVI and backscatters for biomass estimation

The comparison was made between the NDVI and the backscatter method for
calculating the biomass of mangrove forests. First, regression analysis was used to

obtain the coefficients of the NDVI models based on the field investigation data

(table 2). The correlation coefficient value (R) is 0.626 according to the regression

analysis. The accuracy in terms of Root Mean-Square Error (RMSE) is 0.99 kg m22,

compared to the field measured biomass ranging from 0.2 kg m22 to 26.0 kg m22.

The log/exponential transformation model was also tested as a comparison.

However, this did not yield the regression results better than the simple linear model.

The values of R and RMSE are 0.598 and 1.04 kg m22, respectively. It is because the
transformation may not be the best model to fit the complex nonlinear relationship

between NDVI and biomass. In fact, the 2nd order polynomial model has better

performance in estimating mangrove biomass. The values of R and RMSE become

0.668 and 0.95 kg m22, respectively.

Secondly, the same method of regression analysis was applied to obtain the

coefficients of the backscatter models (table 2). The values of R and RMSE are 0.726

and 0.868 kg m22, respectively for the linear model. The values of R and RMSE are

0.741 and 0.857 kg m22, respectively for the log/exponential model. The values of R

and RMSE become 0.841 and 0.700 kg m22, respectively for the 2nd order
polynomial model. This shows that the 2nd order model is also a better option

for representing the nonlinear relationship between wetland biomass and the

backscatter of SAR images.

The study indicates that Radarsat data can provide more accurate results than

Landsat TM data for wetland biomass estimation. The backscatter model shows

Table 2. Regression models for estimating wetland biomass using NDVI and backscatter.

Regression models R RMSE (kg m22)

(1) NDVI
VB5212.546 + 40.303 NDVI 0.626 0.993
VB50.037 e8.918NDVI 0.598 1.042
VB511.460268.821NDVI + 117.308NDVI2 0.668 0.946

(2) Backscatter
VB520.878 + 1.801s0 0.726 0.868
VB549.949e0.361s0 0.741 0.857
VB543.042 + 7.775s0 + 0.357s0 2 0.841 0.700

(3) NDVI and backscatter
VB53.761224.179 NDVI + 52.710

NDVI220.084s0 + 0.001s0 2
0. 769 0.738

5574 X. Li et al.
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7 much improvement in RMSE, compared to the NDVI model—14.1% for the simple

linear, 21.4% for the exponential, and 35.7% for the 2nd order polynomial method.

The analytical model has 16.4% improvement in RMSE, compared to the best

NDVI model (the 2nd order model).

Figure 2 also shows that NDVI is saturated at a much lower amount of biomass

than backscatter for estimating the wetland biomass. This indicates that the

backscatter models should be more accurate than the NDVI models for estimating

the biomass. The figure also suggests that the linear model should not be the best

option for estimation.

A further study is to test whether the integration of Radarsat and Landsat TM

images can produce better results for wetland biomass estimation. In this study, a

2nd order polynomial model is used to integrate the variables of NDVI and

backscatter together. The regression analysis indicates that the integrated model has

a correlation coefficient (R) of 0.769 and a RMSE of 0.738 kg m22 (table 2). It

produces better estimation results than the NDVI model alone. However, the

integrated model cannot produce better results than the polynomial backscatter

model because the errors from the NDVI method can cause the decrease of the

accuracy.

Field investigation indicates that there are significant discrepancies when NDVI

is applied to wetland biomass estimation. Higher values of NDVI should indicate

higher amounts of biomass. It was found that the NDVI values are higher for some

dense herbaceous species, such as Spartina anglica, than for the woody mangrove

trees. This is because the NDVI mainly reflect canopy properties instead of trunk

properties. This has caused serious errors in the estimation of wetland biomass

without vertical information. For example, location m, which is S. anglica, has

much higher NDVI values than location l, which is Sonneratia apetala (figure 3(a)).

In fact, the front part of the wetland near the sea should have much lower amounts

of wetland biomass according to field investigation. However, the section from A

to B (figure 3(a)) indicates that a much higher amount of wetland biomass occurs

in the front part. This contradicts the evidence from the field investigation. This

problem can be solved when the SAR image is used (figure 3(b)). Moreover, the

SAR image is able to provide more spatial information because of its higher

resolution.

As an illustration, figure 4(a) and (b) presents the biomass maps of the study area,

calculated by the NDVI and backscatter models, respectively. More spatial

variations about the wetland biomass can be detected from the backscatter model

because the SAR image has higher spatial resolution and side-looking features,

which can help to obtain more trunk information (figure 4(b)). The detection results

are consistent with the field investigation. However, much less spatial information is

obtained from the NDVI model (figure 4(a)). It also has problems in the biomass

estimation for S. anglica and S. apetala.

4.2 Interpreting the backscatter response of mangrove wetlands using the analytical
model

The analytical model should be more useful for separating different terms of

backscatter. However, the estimation of its parameter values is difficult by applying

conventional regression analysis for solving the complex nonlinear equation. In this

study, the parameter values of the analytical model were obtained by using the

genetic algorithm (GA). The parameter values of the nonlinear equation were found

Radarsat data to estimate mangrove biomass 5575
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by the evolutionary approach. A commercial genetic algorithm package,

GeneHunter (Ward Systems Group, Inc., MD 21703, USA), was used to implement

the evolutionary approach. In the GA programming, each of the individuals
(chromosomes) of a population is a complete definition of a trial solution (e.g. the

parameter values). The fitness function is defined by using the RMSE. The GA

Figure 2. Scatter plot of remote sensing data and measured biomass.
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(a)

(b)

Figure 3. Profiles of NDVI and backscatter in the study area.
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(a)

(b)

Figure 4. Biomass estimated from the NDVI and backscatter models.
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7 program is able to find the parameter values so that the RMSE can be minimized.

During the evolutionary approach, the improvement of RMSE (best fitness value)

becomes stabilized after 50 generations (figure 2). The program stops and the

optimal parameter values can then be determined. The final value of RMSE is

0.713 kg m22.

It is important that the vegetation suv and soil-vegetation interaction T2sug terms

in equation (6) can be conveniently decomposed by the analytical model using the GA

method (figure 5). This is very useful for ecological modelling because the

decomposition can provide detailed information about vegetation and soil back-

ground at each location. The backscatter of the dense mangrove forest (cveg) is 24.567

and the backscatter of the ground without vegetation cover (cgro) is 214.061 in

equation (7). The backscatter for the ground component is very low. The value is very

close to that of water body. As the ground of mangrove wetlands is usually covered

by water, this means that the analytical model can separate these two components of

backscattering effectively. The use of genetic algorithms can conveniently retrieve the

information about mangrove forests and background for the wetland system at each

site. This type of information is important for ecological modelling. Regression

models cannot be applied to the derivation of such information.

5. Conclusion

This study demonstrates that Radarsat data can provide useful information for

wetland studies. It is able to produce more accurate biomass estimation for

mangrove trees because of its high resolution and side-looking features. Many

studies have shown that NDVI is highly correlated with vegetation parameters.

However, this study indicates that NDVI may have significant confusions in

estimating wetland biomass because NDVI can mainly obtain canopy information.

According to our study, the NDVI significantly overestimates the biomass of some

herbaceous species (e.g. Spartina anglica) and underestimates the biomass of some

woody mangrove forests (e.g. Sonneratia apetala). The reason is that S. anglica

Figure 5. Decomposition of the analytical backscatter model into vegetation and soil
components.
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7 grows very densely in the region and its spectral reflectance is very high. The height

information of mangrove trees, such as S. apetala, cannot be appropriately obtained

by optical remote sensing. Therefore, S. anglica has much higher NDVI values than

S. apetala.

The estimation models established from Radarsat data can improve the accuracy

as much as 35.7% in terms of RMSE over the models from optical remote sensing.

This is because the SAR data have higher resolution and side-looking features for

obtaining more accurate trunk information for mangrove forests. The NDVI model

may become saturated at a much lower amount of wetland biomass. Therefore, the

use of the backscatter of SAR images can produce much more reasonable estimation

results. The study also indicates that the integration of NDVI and backscatter can

provide better estimation results than NDVI alone. However, it cannot produce
better estimation results than the single backscatter model because of the errors

from the NDVI itself.

Analytical backscatter models may be more plausible because they can provide

much better modelling structures. However, the determination of the parameter

values is difficult when nonlinear equations are used. Regression analysis is difficult
to derive the parameter values for these complex equations. This study shows that

the use of genetic algorithms can conveniently derive the optimal parameter values.

The model derived from genetic algorithms also has much better performance than

other models. It is more important that the two components, vegetation

backscattering and soil backscattering, can be conveniently decomposed by this

method. This can provide valuable information about the biophysical properties of

mangrove wetlands.
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