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Abstract Carbon emissions are increasing in the

world because of human activities associated with the

energy consumptions for social and economic devel-

opment. Thus, attention has been paid towards

restraining the growth of carbon emissions and

minimizing potential impact on the global climate.

Currently there has also been increasing recognition

that the urban forms, which refer to the spatial

structure of urban land use as well as transport system

within a metropolitan area, can have a wide variety of

implications for the carbon emissions of a city.

However, studies are limited in analyzing quantita-

tively the impacts of different urban forms on carbon

emissions. In this study, we quantify the relationships

between urban forms and carbon emissions for the

panel of the four fastest-growing cities in China (i.e.,

Beijing, Shanghai, Tianjin, and Guangzhou) using

time series data from 1990 to 2010. Firstly, the spatial

distribution data of urban land use and transportation

network in each city are obtained from the land use

classification of remote sensing images and the

digitization of transportation maps. Then, the urban

forms are quantified using a series of spatial metrics

which further used as explanatory variables in the

estimation. Finally, we implement the panel data

analysis to estimate the impacts of urban forms on

carbon emission. The results show that, (1) in addition

to the growth of urban areas that accelerate the carbon

emissions, the increase of fragmentation or irregular-

ity of urban forms could also result in more carbon

emissions; (2) a compact development pattern of

urban land would help reduce carbon emissions; (3)

increases in the coupling degree between urban spatial

structure and traffic organization can contribute to the

reduction of carbon emissions; (4) urban development

with a mononuclear pattern may accelerate carbon

emissions. In order to reduce carbon emissions, urban

forms in China should transform from the pattern of

disperse, single-nuclei development to the pattern of

compact, multiple-nuclei development.
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Introduction

Climate warming is a global issue, which has become

a serious threat to human health and the environment
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of the world. In addition to the natural factors, global

climate warming is closely related to the increase of

carbon emissions produced by human activities.

According to the report from the Intergovernmental

Panel on Climate Change (IPCC), human activities

and fuel burning, especially in cities, are the major

sources of global carbon emissions (IPCC 2007).

Previous studies showed that urban areas were

estimated to consume 67 % of global energy and emit

71 % of carbon dioxide (CO2) worldwide (Agency

(IEA) 2008). It should be a major task to reduce carbon

emission from cities. Many scholars and policy

makers have paid great attention on dealing with the

impact of global climate change by investigating

carbon emission mitigation strategies, including trans-

forming the pattern of economic development, opti-

mizing the energy structure, promoting technological

progress, and developing a low-carbon economy (Guo

et al. 2010). For example, Hou et al. (2011) suggested

a long-term effective mechanism for China to boost

energy-saving technologies and products, and to

promote the economic development toward a low-

carbon mode. Such strategies could contribute sub-

stantially to the reduction of carbon emissions.

In addition, during the last few decades, scholars

have learned about the interactions between carbon

emissions and urban forms. Urban forms can be

defined as the spatial configuration of human activities

(including the spatial pattern and density of land uses,

and spatial design of transport and communication

infrastructure), which can reflect economic, environ-

mental, technological, and social processes at a certain

time (Tsai 2005). The influence of urban forms on

carbon emissions is inevitable and profound. Some

researchers believe that smaller, more compact, and

less disperse urban forms are associated with lower

levels of carbon emissions (Anderson et al. 1996;

Banister 1996; Dhakal 2009). Christen et al. (2011)

found that as much as 50 % of CO2 emissions in cities

are attributable to urban forms, land-use mix, building

types, transportation networks, and vegetation. Ken-

nedy et al. (2009) also analyzed the relationship

between carbon emissions and land use, and found

that, when constraints on land use were stricter, the

level of carbon emissions of the residents living was

lower.

The above studies indicate that carbon abatement

must be achieved, not only through more efficient use

of fuel and transformation of the pattern of economic

development, but also through urban planning and

spatial optimization. Thus, research on the relation-

ships between urban forms and carbon emissions has

become increasingly important. The demand for

quantifying the carbon emissions in the atmosphere

with urban morphology has likewise been raised by

the scientific and policymaking communities. How-

ever, few studies have systematically examined the

spatial–temporal interplay of urban forms with the

specific aim of quantifying the carbon impacts of

expanding urban areas (Alberti and Hutyra 2009;

Heath et al. 2011; Lucy et al. 2011). For example,

Glaeser and Kahn (2010) attempt to quantify carbon

dioxide emissions associated with new construction in

different locations across the country (Glaeser and

Kahn 2010). However, they merely viewed emissions

from the perspectives of driving, public transit, home

heating, and household electricity usage, and ignore

the impact of urban spatial structure. In another study

on carbon emissions in the State of Louisiana, Shu and

Lam (2011) presented a new method based on a

multiple linear regression model to disaggregate

traffic-related CO2 emission estimates from the par-

ish-level scale to a 1 9 1 km2 grid scale (Shu and Lam

2011). However, the factors involved did not consider

the patterns of land use, and uncertainty regarding the

emission estimates at grid cell level remains because

of the error and gaps in the original data. These studies

on carbon emissions don’t well provide the explicit

evidence of how urban land and transportation work

together to affect carbon emissions.

Therefore, in order to deal with the existing

problems, this paper attempts to quantify the relation-

ships between carbon emissions and urban forms using

panel data analysis. Panel data analysis is a regression

method of studying observations from multiple entities

over multiple periods, which has several advantages

over conventional statistical analysis using only cross-

sectional or time series data (Chen et al. 2011). For

instance, panel data usually contain more degrees of

freedom and more sample variabilities than cross-

sectional data, which can improve the efficiency of

estimates. In addition, the panel data model can reduce

the effects of multicollinearity and estimate error.

Moreover, panel data analysis can verify and measure

some factors that cannot be recognized in pure cross-

sectional and time series data models (Hsiao 2003;

Baltagi 2005). In this study, four fastest-growing cities

(i.e., Beijing, Shanghai, Tianjin, and Guangzhou) are
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selected as study areas. As the most important cities in

China, these four cities suffer from a series of

environmental problems, and their carbon emissions

continue to grow due to the rapid development of their

economies. Therefore, this study attempts to reveal the

relationship between urban forms and carbon emis-

sions for the panel of these four cities using the time

series data from 1990 to 2010. Since urban form is

primarily affected by urban land use and transportation

(Anderson et al. 1996), we used the land use classifi-

cation of remote sensing images and the digitization of

transportation maps to obtain and analyze the spatial

distribution of urban land use and transportation

network. Then, a set of spatial metrics for quantifying

urban land use and transportation network data is

utilized. After considering the allocation factors

together, we further implemented the statistical

method of panel data analysis to estimate whether

and to what extent the spatial patterns of urban forms

are associated with carbon emissions. The purpose of

this study is to create a better understanding on the

issues that we are currently facing and to provide a

reference for decision makers to prepare appropriate

policies on developing a low carbon economy.

Study areas

Four cities (i.e., Beijing, Shanghai, Tianjin, and

Guangzhou), located in eastern coastal areas of China

(Fig. 1), are selected as the study area in this study.

These four cities are the most developed metropolis

areas in China, with a total population of 40.67 million

and a total gross domestic product (GDP) of 5125.23

billion RMB in 2010. Beijing, the political, cultural,

and educational capital of China, is located in the

northern part of the North China Plain. It covers an area

of 16,410 km2, with 14 urban and suburban districts

and 2 rural counties. In 2010, it had a population of

19.62 million and a GDP of 1411.36 billion RMB.

Shanghai is the largest city by population (over 23

million in 2010) in China. Located in the Yangtze Delta

area, Shanghai is also a global city, serving as the most

influential economic, financial, international trade,

cultural, science and technology centre. Tianjin, which

borders Beijing, is a metropolis in Northern China. It

covers an area of 1,191 km2, with a population of

approximately 13 million and a GDP of 922.45 billion

RMB in 2010. Guangzhou, located in the Pearl River

Delta, is Southern China’s largest city, with an area of

7434.40 km2, a population of 8.06 million, and a GDP

of 1,074 billion RMB in 2010.

These four cities consume a vast volume of natural

resources in order to sustain economic growth. For

example, the total area of urban land use in four cities

was approximately 1954.40 km2 in 1990, but increased

to 5714.84 km2 in 2010. The rapid urbanization process

has not only led to the conversion of natural ecosys-

tems, farmland, and water into urban areas, but also

given rise to a series of environmental problems,

especially the greenhouse effect and air pollution (Li

and Liu 2008). Thus, to protect natural resources and

improve environmental quality, it is necessary to

identify the factors that influence the carbon emissions

in these fast-growing regions. In this study, these four

cities are chosen as the study area to determine whether

there is a important relationship between urban forms

and carbon emissions.

Data and method

Carbon emissions

In this study, the carbon emissions are described by

carbon dioxide equivalent emissions, which referring

to the carbon content of greenhouse gases that would

have the same global warming potential. The carbon

dioxide equivalent emissions are normally used when

attributing aggregate emissions from the particular

sources over a specified timeframe. Currently, it is

very difficult to acquire precise data of carbon

emissions. However, because carbon emissions are

mainly released from the fossil energy consumption, it

is a useful method to approximate the carbon emis-

sions through energy-related statistical data (Bi et al.

2011; Chun et al. 2011). In this paper, we calculated

the carbon emissions only from fossil energy con-

sumption using a unified standard method recom-

mended by the IPCC Guidelines (IPCC 2006):

C ¼
XW

w¼1

awbwEw ð1Þ

where w is the different categories of energy sources;

W is the total number of energy sources; C represents

the amount of carbon emissions; aw and bw are the

appropriate calorific value and carbon emission factor
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for each fuel type respectively, as shown in Table 1

(Dhakal 2009); Ew is the amount of fossil energy

w obtained from total primary energy supply of the

original energy balance tables expressed in the phys-

ical units, and these tables are derived from the China

Energy Statistical Yearbook and some statistics year-

books of each city (Table 2). Specially, total primary

energy supply contain some fossil energy consump-

tion used to produce thermal power and heating. So the

total carbon emissions we obtained would include the

part of emissions from the electricity and heating

consumption. In addition, the consumption of elec-

tricity and heating bought from other regions could

also lead to some of carbon emissions. But this part of

the emissions only account for a small proportion of

total carbon emissions, so was ignored in this study.

As shown in Fig. 2, the estimated results of carbon

emissions of each city are obtained from Eq. (1). In

Fig. 2, we find that the carbon emissions of these cities

from 1990 to 2010 show an increasing trend. Shanghai

is the largest emitter, with its emission increasing from

12.85 million tons in 1990 to 62.87 million tons in

2010. In addition, the carbon emission of Guangzhou

was lower than those of other three cities before 2005,

but more than that of Beijing in 2010.

Urban land use and transportation data

In this study, a spatial distribution data of urban land

use and transportation network is used to develop

spatial metrics for quantifying urban forms.

The spatial distribution of urban land use is

acquired from the land use classification of remote

sensing images. Remote sensing is the acquisition of

information on an object or phenomenon that can

support detailed and accurate urban land mapping at

different spatiotemporal scales. These data can be

useful in acquiring the spatial distribution of urban

land use through the land use classification (Herold

et al. 2002). First, land use and cover of four cities are

mapped by the use of cloud-free Landsat Thematic

Mapper data with corresponding 30 m resolution for

five time points: 1990, 1995, 2000, 2005, and 2010.

After all images are geometrically corrected to

Universal Transverse Mercator map projection sys-

tem, land use classification of these images is then

implemented using the object-oriented classification

software Definiens Developer 7.0. The classification

procedure involves the following steps: image seg-

mentation, sample selection, feature optimization, and

objects classification. In the process of image seg-

mentation, the image is subdivided into objects

consisting of similar pixels. Then, the image objects

are selected manually as samples for each land use

class. To maximize the distance between land use

class and another, the next step is to determine a set of

features using the tool of Feature Optimization in the

software. Finally, according to the selected samples

and features, nearest-neighbor classification is per-

formed to achieve the classification results. Once the

land use classification completed, the output images

are further converted into two land categories (urban

and non-urban) based on the differences in land use

Fig. 1 The location of

research areas (Beijing,

Tianjin, Shanghai, and

Guangzhou)
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properties of each city and the research objective in

urban forms analysis. As shown in Figs. 3, 4, 5 and 6,

the final classification results provide an overview of

urban land use for each city in 5 years.

To evaluate the reliability of the classification

results, an accuracy assessment for the urban category

is then performed using a method proposed by Pontius

and Millones (2011). This method divides the dis-

agreements between classification and reference into

quantity disagreement and allocation disagreement,

which is more helpful than Kappa indices just using a

single ratio to represent the classification accuracy.

The quantity disagreement and allocation disagree-

ment can be derived from the following equations

(Pontius and Millones 2011):

puv ¼
nuv

PV

v¼1

nuv

0

BBB@

1

CCCA
Nu

PV

u¼1

Nu

0

BBB@

1

CCCA ð2Þ

Q ¼ 1

2

XV

g¼1

qg ¼
1

2

XV

g¼1

XV
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 !
�
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 !�����

�����

ð3Þ
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2
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g¼1
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XV
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 !
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XV
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 !
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ð4Þ

where V is the number of land use classes; nuv is the

number of sample classified as u and referenced as v;

Nu is the population of land use class u; qg and ag are

the quantity disagreement and the allocation disagree-

ment of land use class g; puv is the estimated

proportion of the study area classified as u and

referenced as v; Q and A are the overall quantity

disagreement and the allocation disagreement,

respectively.

We calculated the quantity and allocation disagree-

ments for the accuracy of the urban category. In each

image we constructed several sampling data and

collected the samples’ reference information based

on visual inspection of the raw images. Through

comparing the classification result and reference

information in each point, each sampling data was

evaluated and summarized in an estimated population

matrix. According to Eqs. (2), (3) and (4), the results of

the overall quantity and allocation disagreements of

the urban category in each image were listed in

Table 3. From the table, the minimum of quantity

disagreement is 1.17 %, while the maximum one is

5.01 %. The values of allocation disagreement range

from 4.56 to 9.14 %. On the whole, the total

disagreements are approximately 12 %.

In addition, transportation network data with vector

format are obtained from the digitization of the

transportation maps of each city. However, it is

difficult to acquire the complete transportation maps

for each year due to the absence of establishment or

update of traffic road database. Thus, we integrate the

transportation maps and remote sensing images to

extract main city roads. Firstly, we obtained the latest

transportation maps from the transportation bureau of

each city. After the overlaying of the latest transpor-

tation maps and Landsat TM images, we then modified

digitally the transportation maps based on the visual

inspection of the Landsat TM images. Such that, we

could get the main roads of each city in the five time

points. The digital results shown in Figs. 3, 4, 5 and 6

present the spatial distribution of the main roads of

each city.

Table 1 Calorific value and emission factors of fuel types

Calorific value Carbon emission

factor (not CO2)

(t-C/TJ)

Raw coal 20,934 kJ/kg 26.8

Cleaned coal 26,377 kJ/kg 26.8

Other washed coal 8,374 kJ/kg 26.8

Briquettes 20,934 kJ/kg 26.8

Coke 28,470 kJ/kg 29.5

Coke oven gas 17,375 kJ/cu m 13

Other gas 5,234 kJ/cu m 13

Other coking products 28,470 kJ/kg 29.5

Crude oil 41,868 kJ/kg 20

Gasoline 43,124 kJ/kg 18.9

Kerosene 43,124 kJ/kg 19.6

Diesel oil 42,705 kJ/kg 20.2

Fuel oil 41,868 kJ/kg 21.1

Liquefied petroleum gas 50,241 kJ/kg 17.2

Refinery gas 46,055 kJ/kg 18.2

Other petroleum products 41,868 kJ/kg 25.8

Natural gas 38,979 kJ/cu m 15.5
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Table 2 the consumption of each energy obtained from the original energy balance tables of each city

Cities Years Raw coal

(104 tons)

Cleaned

coal

(104 tons)

Other

washed coal

(104 tons)

Briquettes

(104 tons)

Coke

(104 tons)

Coke

oven gas

(108 cu m)

Other gas

(108 cu m)

Other coking

products

(104 tons)

Crude oil

(104 tons)

Beijing 1990 1379.36 231.44 15.29 21.53 122.74

1995 2185.21 494.60 0.08 92.85 3.07 654.65

2000 2068.44 569.80 8.85 46.45 -1.41 755.20

2005 2563.37 455.02 8.42 49.15 -8.98 799.62

2010 2416.88 201.29 6.42 3.63 56.49 1.46 -8.32 1117.24

Tianjin 1990 1203.77 126.83 5.52 22.17

1995 2192.83 230.11 5.12 -25.33 488.38

2000 2218.15 249.38 -46.45 -0.27 -8.81 698.11

2005 3289.00 512.18 11.77 -0.22 21.55 -11.43 863.17

2010 4361.30 424.06 16.87 3.31 425.69 1.09 172.39 1566.81

Shanghai 1990 858.75 419.32

1995 2879.78 1065.46 61.12 -0.94 39.36 975.71

2000 3279.96 1219.57 2.52 -54.24 -0.80 60.88 -0.34 1310.39

2005 4128.78 1159.79 34.00 -140.46 92.00 -14.45 1967.00

2010 4794.59 1059.83 9.86 10.69 83.93 0.82 70.32 2126.50

Guangzhou 1990

1995 1204.16 31.68 20.82 10.17 440.39

2000 1418.96 31.14 0.01 17.93 659.44

2005 1685.79 21.43 308.27

2010 1986.50 18.46 461.60

Cities Years Gasoline

(104 tons)

Kerosene

(104 tons)

Diesel oil

(104 tons)

Fuel oil

(104 tons)

Liquefied

petroleum

gas (104 tons)

Refinery gas

(104 tons)

Other petroleum

products

(104 tons)

Natural gas

(108 cu m)

Beijing 1990 208.47 21.26 0.72 0.83

1995 -24.62 65.70 -34.64 -22.89 -2.56 -26.65 1.21

2000 -24.30 116.22 -100.50 11.04 -8.49 -19.86 10.97

2005 93.45 179.33 -27.83 -6.20 -9.76 94.56 31.74

2010 114.48 273.69 -111.89 31.27 8.17 -24.81 75.03

Tianjin 1990 32.12 1.96 60.34 124.14 5.17 26.39 2.28

1995 -16.62 -6.15 -53.85 18.94 -1.54 -22.20 3.93

2000 -1.92 -13.35 -51.95 39.12 -2.97 -47.05 6.40

2005 -26.46 -10.66 -121.89 107.00 -16.62 -29.22 9.05

2010 40.66 -59.76 -269.47 123.22 -31.08 9.83 22.96

Shanghai 1990 50.68 20.53 99.59 219.03 104.59

1995 -33.15 2.89 -5.86 80.05 -4.14 -180.18

2000 -131.38 7.90 -225.49 353.75 11.62 -2.47 -67.06 2.54

2005 -21.10 44.07 -388.44 646.35 15.06 -1.90 -60.73 18.74

2010 154.69 249.86 -265.07 714.73 48.92 -0.06 -115.69 45.01

Guangzhou 1990

1995 -63.17 14.54 -67.25 151.74 3.99 2.01

2000 -56.96 15.67 -97.96 208.09 3.09 1.98 0.10

2005 -42.93 -46.15 106.22 2.33

2010 -38.71 -67.23 145.66 1.80

The blank denotes the null record in statistics yearbooks
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Spatial metrics for quantifying urban forms

Urban forms can affect the social, economic condi-

tions and environment of the city (Camagni et al.

2002). Particularly, urban forms directly affect the

travel behavior, which, in turn, affect carbon emis-

sions (Cervero 1998). Therefore, in order to deal with

the relationships between urban forms and carbon

emissions, city planners need a deep understanding on

the characteristics and rules of urban forms. Currently,

the use of spatial metrics is very useful for

representing urban forms (Galster et al. 2001; Holden

and Norland 2005). Based on previous studies, spatial

metrics can constitute critical independent measures

of the urban socioeconomic landscape and can also be

used for an improved representation of a variety of

urban spatial characteristics (Geoghegan et al. 1997;

Parker and Meretsky 2004). Thus, in this study,

several spatial metrics for quantifying urban forms in

different dimensions(i.e. size, shape, density) are

chosen based on the published literatures about this

theme (Seto and Fragkias 2005; Dietzel et al. 2005)

and the characteristics of the study area. These spatial

metrics include Total (urban) Class Area (CA),

Number of Patches (NP), Edge Density (ED), Mean

Perimeter-Area Ratio (PARA_MN), Percentage of

Like Adjacencies (PLADJ), Patch Cohesion Index

(COHESION), Largest Patch Index (LPI), Urban

Road Density (RD), and Traffic Coupling Factor (CF).

CA represents the total area of all patches of the

corresponding patch type, and here is an important

measure in representing the expansion of urban land

use. NP is equal to the number of urban patches, and is

used to measure the extent of subdivision or fragmen-

tation of urban land. ED is equal to the sum of the

lengths of all edge segments involving the urban patch,

divided by the total landscape area (i.e., a measure of

the sprawl and shape of urban land use). PARA_MN is

Fig. 2 Carbon emissions in four cities for selected years. Notes

because the statistics yearbooks don’t record any energy data of

Guangzhou in 1990, here we estimate a value based on its

economic and population for the data consistency in panel

analytic

Fig. 3 The change of urban

land use (a) and

transportation network

(b) in Beijing for 1990–2010
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the average perimeter-to-area ratio of urban patches in

the landscape, which can quantify urban landscape

configuration in terms of the complexity of patch

shape. PLADJ is a contagion index equal to the

percentage of cell adjacencies involving urban patch

that are similar adjacencies (Turner 1989). PLADJ can

be used to represent the degree of aggregation of the

urban patch. Regardless of the amount of landscape

comprising urban land use, this index will be at a

minimum if the urban patch is maximally dispersed

and will be at a maximum if the urban patch is

maximally contagious. COHESION is proportional to

the area-weighted mean perimeter-to-area ratio

divided by the area-weighted mean patch shape index.

This index can be a measure of the physical connect-

edness of urban land, which would increase as the

urban patch becomes more clumped or aggregated in

its distribution. LPI quantifies the percentage of total

landscape area comprised by the largest patch. In urban

landscape, it can be used to describe the extent to which

an urban area is characterized by a mononuclear

pattern of development (Gustafson 1998). Table 4

shows a more detailed description including the

specific mathematical equations of the metrics (McGa-

rigal et al. 2002) used in this research.

The two metrics, RD and CF, are constructed to

describe the interrelationship between urban spatial

structure and traffic organization. Because of rapid

economic growth, fast urbanization, and quick motor-

ization, the urban transportation sector has currently

become one of the sectors with the highest amount of

carbon (Svensson et al. 2004). In addition, traffic

organization change can play an important role in the

development of urban spatial structure. But at the same

time it is also affected by urbanization, which can

provide the development space and objective necessity

of urban traffic organization (Han and Liu 2009). Thus,

the analysis of the influence of traffic organization and

urban spatial structure on carbon emissions is very

important. In this research, we used urban road density

and traffic coupling factor to represent the interrela-

tionship between traffic organization and urban spatial

structure. Urban road density (RD) refers to the total

length of the regional road network divided by the area

of urban land use (not the total area of a city). Higher

road density should generally imply a higher avail-

ability and connectivity of short alternative routes

(Jenelius 2009). Traffic coupling factor (CF) is defined

as a proportion of the total area of road effect buffer

zones and the area of urban land use, indicating the

extent of interaction in urban spatial structure and

urban traffic organization. The higher the value of CF

is, the more harmonious the development of urban

forms is (Kenworthy and Laube 1996). The equations

of RD and CF are presented as follows:

RD ¼ L

Aurban

ð5Þ

CF ¼ Abuffer

Aurban

ð6Þ

where L is the total length of the regional road

network, Abuffer represents the total area of road effect

buffer zones, and Aurban represents the area of urban

land use. Specifically, because no criteria for deter-

mining buffer distance when conducting road effect

buffer zones have been identified in previous studies

(Li et al. 2004), we set the buffer distance as 500 m,

which does not account for road width.

With the support of the data we need, some spatial

metrics, such as CA, NP, ED, PARA_MN, PLADJ,

COHESOIN and LPI, are computed individually for

each city using the public domain spatial metrics

program FRAGSTATS (McGarigal et al. 2002). And

the value of the metrics RD and CF are obtained from

the use of the spatial analyst and buffer analyst in

ArcGIS. Finally, the specific calculation results,

further used as the explanatory variables for carbon

emissions in panel data analysis, are shown in Fig. 7.

Panel data analysis

Panel data analysis employed in this paper is to examine

the relationships between carbon emissions and urban

forms. Firstly, panel unit root tests and panel cointegra-

tion tests of the variables should be conducted to confirm

the validity of the panel data model estimation before

establishing the panel regression model. Next, all data

must undergo natural logarithm transformation to avoid

non-stationarity and heteroskedasticity phenomena in

the time series variables (Hsiao 2003). Finally, the

parameters of interacting variables are estimated by

using the panel regression model.

Panel unit root tests

On account of the non-stationary nature of time series

data, their stationary nature must be examined before
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panel data models are established. Panel unit root test

has recently attracted attention because it is more

powerful than the normal time series unit root. In

general, the panel unit root test is based on the

following autoregressive model:

yit ¼ qiyit�1 þ diXit þ eit ð7Þ

where i = 1, 2,…, N indicates entities observed in the

time points t = 1, 2,…, T; Xit represents exogenous

variables in the model including any fixed effects or

individual trends; di is the vector of regression param-

eters; qi is the autoregressive coefficients, and eit is a

stationary process. If qi \ 1, yi is said to be weakly

trend-stationary. Conversely, if qi = 1, then yi contains

a unit root (Mahadevan and Asafu-Adjaye 2007).

One of the most widely applied tests within this

field of research is the Levin et al. (2002) (LLC) test,

which is improved on Eq. (7). The test is designed to

examine the null hypothesis of a common unit root in

the panel versus the alternative of stationarity when

the cross-sectional units are independent of one

another (Levin et al. 2002). In this paper, the LLC

panel unit root test is applied to examine whether the

data are difference-stationary or trend-stationary and

to determine the number of unit roots at their level. We

likewise check if any of the variables are integrated

from the same order to satisfy the premise of

cointegration test.

Panel cointegration tests

From the result of the unit root tests, if the variables are

integrated of order one, then the next step is to utilize

cointegration tests to analyze whether a long-run

relationship exists among them. The analysis is con-

ducted by applying Pedroni’s heterogeneous panel

cointegration tests, which allow for cross-section inter-

dependence with heterogeneous slope coefficients, fixed

effects, and individual specific deterministic trends.

Pedroni’s framework provides cointegration tests for

both heterogeneous and homogenous panels with seven

repressors based on seven residual-based statistics

(Pedroni 1999).

In these seven statistics, the panel v-statistic, panel

r-statistic, panel PP-statistic, and panel ADF t-statistic

are based on pooling the residuals of the regression

along the within-dimension of the panel. The other

three (Group rho-Statistic, Group PP-Statistic and

Group ADF-Statistic) are based on pooling the

residuals of the regression along the between-

Fig. 4 The change of urban

land use (a) and

transportation network

(b) in Shanghai for

1990–2010

Landscape Ecol (2013) 28:1889–1907 1897

123



dimension of the panel (Al-mulali and Binti Che Sab

2012). In both cases, the basic approach is to first

estimate the hypothesized cointegrating relationship

separately for each panel member, and then to pool the

resulting residuals for conducting the panel tests. See

Pedroni (1999) for details on these tests and the

relevant critical values.

Panel data model

Generally, panel data analytic models can be catego-

rized into three types: pooled regression model,

variable intercepts and constant coefficients model,

and variable intercepts and variable coefficients model

(Baltagi 2005). The pooled regression model has

constant coefficients, which are referred to as both

intercepts and slopes. The form of the pooled regres-

sion model can be expressed as Eq. (8), in which a and

b are constant coefficients. Equation (9) is the form of

variable intercepts and constant coefficients model,

which has constant slopes but intercepts that differ

based on entity and/or time. The third model has

differential intercepts and slopes that vary based on

both entity and/or time shown as Eq. (10).

yit ¼ aþ bxit þ eit ð8Þ
yit ¼ ai þ bxit þ eit ð9Þ
yit ¼ ai þ bixit þ eit ð10Þ

where i and t represent the entities and time points; yit

and xit are indices for the dependent variable and

independent variable, respectively; and ai is specified

as fixed effects or random effects. Similar to the

specification of ai, bi can also be expressed as a fixed or

random effect. Here, eit is the error term.

Two main hypotheses are used to determine which

specific model should be selected. Whether the

hypothesis is accepted based on the result of F-test

through comparing the residual sum of squares (RSS)

of Eqs. (8), (9), and (10).

Fig. 5 The change of urban

land use (a) and

transportation network

(b) in Tianjin for 1990–2010
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H1 : b1 ¼ b2 ¼ � � � ¼ bN

F1 ¼
ðS2 � S1Þ=½ðN � 1Þk�
S1=ðNT � Nðk þ 1ÞÞ �F½ðN � 1Þk;

NðT � k � 1Þ�
ð11Þ

H2 : a1 ¼ a2 ¼ � � � ¼ aN b1 ¼ b2 ¼ � � � ¼ bN

F2 ¼
ðS3 � S1Þ=½ðN � 1Þðk þ 1Þ�

S1=ðNT � Nðk þ 1ÞÞ �F½ðN � 1Þðk þ 1Þ;

NðT � k � 1Þ� ð12Þ

where F1 is the statistic for H1 that intercepts and

coefficients are held constant over entities and time;

F2 is the statistic for H2 that intercepts are variable

and coefficients are constant; S1, S2, and S3 are RSS for

Eqs. (10), (9), and (8), respectively; and N, T, and

k denote the number of entities, the number of time

points, and the number of explanatory variables, respec-

tively. The entities are specified as the cities in this study.

Given the confidence level and condition that

T[ k ? 1, if F2 is larger than or equal to the critical

Fig. 6 The change of urban

land use (a) and

transportation network

(b) in Guangzhou for

1990–2010

Table 3 Results of the overall quantity disagreement (Q) and allocation disagreements (A) of the urban category in each image (%)

Accuracy assessment Beijing Shanghai Tianjin Guangzhou

Q A Q A Q A Q A

1990 1.24 4.56 4.12 8.37 3.82 7.31 3.22 7.04

1995 4.15 7.73 2.06 8.03 3.61 7.93 5.01 7.86

2000 2.31 7.91 1.08 5.96 2.87 6.34 2.76 6.32

2005 1.17 6.34 3.26 9.14 3.08 6.99 3.55 7.83

2010 2.46 7.31 2.85 7.30 2.15 5.87 4.18 8.07
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value, the hypothesis H2 is accepted and Eq. (8) is

selected; otherwise, the hypothesis H1 must be tested. If

F1 is larger than or equal to the critical value, the

hypothesis H1 is then accepted, and Eq. (9) is selected;

otherwise Eq. (10) is selected. Next, we need to decide if

the fixed effects or random effects model should be used,

which is determined by the Hausman test (Baltagi 1996).

The Hausman test mainly asks whether the covariance

estimator and GLS estimates of b (the common param-

eter) are obviously different (Hausman 1978). This

statistic analysis is distributed asymptotically as a central

v2 under the null hypothesis (Hsiao 2003).

Results and discussion

In this study, the statistical method of panel data

analysis was implemented through the statistical

software EViews. Originally developed and distrib-

uted by Quantitative Micro Software (QMS), EViews

offers innovative solutions for econometric analysis,

forecasting, and simulation. Therefore, we estimated

the relationships between carbon emission and urban

forms with the EViews testing. The analysis procedure

and experiment results are described below.

Panel unit root analysis

Table 5 reports the results for the LLC panel unit tests.

As the table shows, with exception of urban road

density and traffic coupling factor, the null hypothesis

of non-stationary is rejected at the 10 % significance

for the levels of other variables. When the first

differences are taken, the null hypothesis of non-

stationary is rejected for all the variables. Therefore,

we can conclude that all the variables are non-

stationary and integrated at an order of one. Based

on these results, carbon emissions and other variables

are tested to find whether there is a long-run relation-

ship between them.

Table 4 Spatial metrics of urban land use

Indicators Abbreviation Formula Description

Total urban

area

CA CA ¼
Pn

j¼1 ajð1=10000Þ aj = area (m2) of urban patch j

Number of

patches

NP NP ¼ n n = number of urban patches

Edge density ED ED ¼ ð10; 000Þ
Pn

j¼1 ej=AREA ej = total length (m) of edge in landscape involving

urban patch j, including landscape boundary and

background segments of urban patch

AREA = total landscape area (m2)

Mean

perimeter-

area ratio

PARA_MN
PARA MN ¼

Pn

j¼1
ðlj=ajÞ

n

lj = perimeter (m) of urban patch j

aj = area (m2) of urban patch j

Percentage

of like

adjacencies

PLADJ PLADJ ¼ dPm

j0¼1
dj0
ð100Þ d = number of like adjacencies between pixels of

urban patch based on the double-count method

dj’ = number of adjacencies between pixels of

urban patch and non-urban patch j’ based on the

double-count method

m = number of non-urban patches

Patch

cohesion

index

COHESION COHESION

¼ 1�
Pn

j¼1 1
Pn

j¼1 lj
ffiffiffiffi
aj
p

 !
1� 1ffiffiffiffiffiffiffiffiffiffiffi

SUM
p

� ��1

ð100Þ

lj = perimeter of urban patch j in terms of number

of cell surfaces

aj = area of urban patch j in terms of number of

cells

SUM = total number of cells in the landscape

Largest

patch

index

LPI LPI ¼ maxaj

AREA
ð100Þ aj = area (m2) of urban patch j

AREA = total landscape area (m2)
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Fig. 7 Values of spatial metrics of four cities
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Results of panel cointegration

According to the above results, seven cointegration

statistics are calculated to test the long-run relationship

among these variables. The results of panel cointegra-

tion tests between carbon emissions and other variables

are displayed in Table 6. As Table 6 shows, the panel

rho-statistic and group rho-statistic of these variables

accept the null hypothesis of no cointegration; however,

the other five statistics reject this hypothesis. In addition,

the significant levels are different among these vari-

ables. Considering the Orsal’s findings that the panel

ADF-statistic performs better than the other three

within-dimension-based statistics and three group-mean

statistics through a comparison of the relative perfor-

mance of Pedroni’s the test statistic (Orsal 2007), we

based our conclusions primarily on the panel ADF-

statistics, which shows that the nullity of non-cointe-

gration of the variables is rejected at the 5 % signif-

icance level (see the bold numbers in Table 6). This

indicates that a long-term equilibrium relationship

exists between carbon emissions and other variables.

Parameter estimations of the panel model

Since there is a relationship between carbon emissions

and other variables, we establish panel regression

models for these variables to estimate influences of

patterns of urban land use and transportation on carbon

emissions. Given the condition that T [ k ? 1 and

T = 5, the maximum value of k is 3, which implies

that a regression model have, at most, three explan-

atory variables. The explanatory variables are sepa-

rated into three regression models in order to analyze

the relationship of carbon emissions and urban forms

properly. The combinations of explanatory variables

are organized as (1) CA, PLADJ, and COHESION; (2)

NP, CF, and LPI; and (3) RD, ED, and PARA_MN.

Next, F-tests are performed to determine which

specific regression form should be used for these three

models. The results of the F-tests are listed in Table 7.

For Model 1, given the significance level of 5 %, F2 is

equal to 6.0077, which is greater than F(12,4). Thus,

hypothesis H2 is rejected. In addition, F1 is greater

than F(9,4), given the same significance level; thus,

hypothesis H1 is accepted, meaning that Model 1

should adopt Eq. (9). The F-test results for the other

two models are similar to that of Model 1; thus, Eq. (9)

is also used for Models 2 and 3. Table 8 presents the

results of the Hausman test for the three models. The

probability P values of the three models are less than

the critical value at the 5 % level of significance,

indicating that it should use the fixed-effect model,

rather than the random effects model. Then, general-

ized least squares (GLS) regression is likewise

employed for the above three models.

Table 9 displays the coefficients estimated from

panel data analysis, which demonstrate a clear rela-

tionship between carbon emissions and urban forms.

As expected, Table 9 shows that CA is positively

correlated with carbon emissions. Thanks to the

market-oriented reform and fast economic develop-

ment, the urbanization in these four cities is acceler-

ating during the study period. The expansion of urban

areas has led, not only to changes in the structure and

composition of agriculture and forest, but also to

decreases in vegetation carbon storage. Rapid urban-

ization in these four cities has also caused the fast

growth of population, such that daily living, traveling,

and working of the population create a great demand

for energy and lead to large quantities of carbon

emissions. Moreover, as an important industry in these

regions, manufacturing has to consume huge land

resource and increase the amount of carbon emissions

for the industrial production. Thus, unsurprisingly, the

rapid growth of urban areas has brought about a

corresponding increase in carbon emissions.

The estimation results show that the variables NP,

ED, and PRAR_MN also have significant positive

impacts on carbon emissions. NP is used to reflect the

scattering of the spatial pattern of urban land use. The

higher the value of NP is, the more scattered the spatial

pattern of urban land use is. The variables ED and

PRAR_MN measure the regularity of the shape of

urban patches. The shape of urban land use becomes

more irregular if the values of ED and PARA_MN

increase under the restriction of the same amount of

area for urban patch. Accordingly, the estimation

results on the variables NP, ED, and PRAR_MN

indicate that a more scattered or irregular pattern of

urban land use will give rise to more carbon emissions.

The main reason for this phenomenon may be the

increase in potential transportation requirements when

activities are distributed in many different urban

patches. For example, in Beijing or Shanghai, many

newly built residential areas are distributed in distant

suburbs where the living environment is better than

that in the central urban area. Thus, the scattered or
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irregular pattern of residential areas lead to recurrent

long movements of people from residences to their

places of work (Muller 2004). As a consequence, a

higher level of person transport is incurred to meet the

need of economic activities, which results in higher

consumption of energy and increases more carbon

emissions.

We further find that urban sprawl with an aggre-

gated and continuous pattern is conducive to the

reduction of carbon emissions based on the estimation

results that the variables PLADJ and COHESION are

negatively correlated with carbon emissions. As

discussed above, the variables PLADJ and COHE-

SION are measures of the aggregation and connect-

edness of urban land, respectively. The lower the

values both PLADJ and COHESION are, the more

compact the development pattern of urban land is.

Currently, a number of studies have stated that a

compact urban structure is highly beneficial for

sustainable development because, for instance, of the

lesser need for car transport, increased accessibility,

reuse of existing infrastructure, preservation of green

areas outside the cities, and regeneration of urban

areas (Gordon and Richardson 1997; Van Der Waals

2000; Thinh et al. 2002). These benefits contribute

substantially to the decrease in carbon emissions.

Thus, the estimation results suggest that a compact

urban structure would help reduce carbon emissions.

Notably, the variable LPI has significant positive

impact on carbon emissions. Contrary to previous

research conclusions by Chen et al. (2011), this estima-

tion result indicates that increasing the percentage of

urban landscape accounted by the urban core (largest

urban patch) can lead to an increase in carbon emissions.

The difference of urbanization level between the differ-

ent study areas could be a reason why this study reached a

different conclusion from Chen. But most importantly,

the research of Chen ignored the core influence of traffic

congestion in a city. Certainly, we cannot deny that a

larger urban core can provide more functions of

economic activities. However, this can also lead to an

increase in traffic. For example, according to the

statistical yearbooks, the total number of vehicles of

the four cities is about 4.49 million in 2000, but increased

to 11.57 million in 2010. A large number of people

driving to the urban center for work, study, or shopping

could easily result in traffic congestion due to insufficient

road resources. Traffic congestion, characterized by

slower speeds, longer trip times, and increased vehicular

queuing, not only raises fuel consumption, but also

increases exhaust emissions (Ang 1990; Baranovskii

et al. 1995). Besides, the research of Makidoa et al.

(2012) has endorsed the view that too dense settlements

in mono-centric form may lead to greater per capita CO2

emissions. Therefore, to some degree, the urban form

development with a mononuclear pattern can increase

the amount of carbon emissions.

The estimation results of urban road density and

traffic coupling factor for carbon emissions support the

above analysis. The variables RD and CF both have

significant negative effects on carbon emissions,

indicating that higher RD and CF values can result

in lower carbon emissions. Obviously, improvements

in urban road density can effectively raise the flow

speed of vehicles and reduce traffic congestion, which

could improve the efficiency of fuel consumption of

vehicles and reduce the carbon emissions. However, if

a new road is constructed far from the functional sites

of economic activities, the value of RD metric may be

increase. But this construction could also result in a

waste of energy and resources, instead of the reduction

of carbon emissions, because of the increase in travel

time. Thus, the coupling degree of urban spatial

structure and traffic organization is a very important

factor in carbon emissions. Specifically, the coupling

development of urban spatial structure and traffic

organization can enable traffic to flow freely and

improve accessibility to a transport node or agglom-

eration of economic activities (Kenworthy and Laube

1996). Thus, improvements in urban road density and

the coupling degree of urban spatial structure and

Table 5 Results of LLC panel unit root tests

Variable Levels First difference

Carbon -3.6046*** -21.6329***

CA -2.2333** -9.6038***

NP -6.3089*** -21.1611***

ED -7.8068*** -4.5152***

PARA_MN -8.4376*** -153.9060***

PLADJ -10.0509*** -5.4607***

COHESION -8.9882*** -10.4263***

LPI -19.5124*** -11.6711***

RD -0.3959* -1.2902***

CF 0.1532* -45.9063***

*** Significance at the 1 % level, ** 5 % level, and * 10 %

level
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traffic organization could be a particularly effective

method of reducing traffic congestion, as well as

carbon emissions.

At present, there have already existed some

researches on the energy consumption or carbon

emissions from cities (Huang et al. 2013). But

researches on quantifying the relationship between

carbon emissions and urban forms using panel data

analysis, especially for Chinese cities, have been still

little reported so far. One recent study used somewhat

similar approach to estimate the impacts of urban

forms on energy consumption in five cities of Pearl

River Delta (Chen et al. 2011). Its analysis showed the

same views that the growth of the urban size,

fragmentation, and irregularity of urban land use

patterns can lead to increased energy consumption.

However, one conclusion that increasing the percent-

age of urban landscape accounted by the urban core

can help reduce the energy consumption in their study

is different from ours. In the results of our study, the

urban form development with a mononuclear pattern

may increase the amount of carbon emissions because

of the core influence of traffic congestion in the four

large cities. Besides, we also confirmed this view by

the estimation results of urban road density and traffic

coupling factor for carbon emissions, and suggested

urban forms in China should transform from the

pattern of disperse, single-nuclei development to the

pattern of compact, multiple-nuclei development.

Thus, these results of our study are credible and

representative, which is not presented in the previous

researches.

In fact, the study has certain limitations that remain

to be fixed. For example, industrial activities are

usually the major sources of carbon emissions in

Chinese cities, but less affected by the urban forms. So

it is a limitation when analyzing the relationship

between city’s total emissions and urban forms.

Considering the difficulty in classifying accurately

the industrial land through Landsat TM images with a

30 m resolution and collecting land use data on earlier

years, in this study we could also not figure out the

impact of spatial distribution of industrial activities on

carbon emissions. Furthermore, because of the differ-

ence of urbanization in different regions, the results of

the empirical results do not represent the common

Table 6 Testing for bivariate cointegration between carbon emissions and other variables

Test

statistics

Panel

v-statistic

Panel rho-

statistic

Panel PP-

statistic

Panel ADF-

statistic

Group rho-

statistic

Group PP-

statistic

Group ADF-

Statistic

CA 8.7098*** 1.0925 -5.417*** -2.1965** 1.8136 -5.5792*** -5.4475***

NP 13.1406*** 0.8966 -3.7768 -1.7858** 1.9360 -1.7221** -7.3278***

ED 5.5646*** 1.2313 -1.3403* -21.8732*** 1.6820 -4.5718*** 124.88

PARA_MN 16.8802*** 1.0389 -3.5769*** -12.7876*** 1.9095 -1.8802** -23.6619***

PLADJ 0.5566 -0.2907 -5.3368*** -3.3066*** 0.9365 -7.6116*** -9.4248***

COHESION 9.9246*** 0.4797 -13.3733*** -2.8358*** 1.3960 -11.9594*** -12.6061***

LPI 19.0783*** 0.5069 -10.5988*** -17.1068** 1.6738 -6.8216*** 0.6440

RD 2.0251** -0.1328 -1.5698* -1.9111** 0.7255 -4.5544*** -5.2425***

CF 12.8857*** 0.7913 -4.7404*** -6.6392*** 1.5998 -7.6745*** -16.8097***

*** Significance at the 1 % level, ** 5 % level, and * 10 % level

Table 7 F-test results for Model 1, 2 and 3

F-test Model 1 Model 2 Model 3

Hypothesis H2 F(12,4) \ 6.0077 (0.05) F(12,4) \ 8.4167 (0.05) F(12,4) \ 6.1291 (0.05)

Hypothesis H1 F(9,4) [ 0.9582 (0.05) F(9,4) [ 3.4554 (0.05) F(9,4) [ 1.6773 (0.05)

Table 8 Hausman test results

v2 statistic Prob. Conclusion

Model 1 27.5762 0.0000 Fixed effect model

Model 2 25.8901 0.0000 Fixed effect model

Model 3 20.6890 0.0001 Fixed effect model
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mechanism and need thorough examination. Thus, in

the future study, we will anticipate the collection of

more finer land use data and focus on building models

in order to provide general understandings about

the relationship between urban forms and carbon

emissions.

Conclusions and policy implications

In response to global climate change, carbon emission

mitigation strategies have been studied and formulated

from social and economic perspectives. Increasing

attention has been given to the effects on carbon

emissions caused by different urban forms. However,

quantifying the carbon impacts of urban forms accu-

rately and systematically remains relatively unex-

plored. Therefore, this paper attempts to quantify the

relationships between urban forms and carbon emis-

sions empirically for the panel of four cities (i.e.,

Beijing, Tianjin, Shanghai, and Guangzhou) using the

time series data for four time intervals.

In this study, panel data analysis was implemented

to estimate the relationships between urban forms and

carbon emissions after several selected spatial metrics

for quantifying urban forms were obtained from the

spatial distribution data of urban land use and trans-

portation network. Panel unit root test and panel

cointegration analysis of the spatial metrics variables

were conducted before panel data models were

established. These test results support the view that

all panel variables are non-stationary and integrated of

order one. The results further demonstrate that a long-

term equilibrium relationship exists between these

spatial metrics and carbon emissions.

Additionally parameter estimations of the panel data

model reveal that the individual variable coefficients

have important but different impacts on carbon emis-

sions. Urban expansion (high CA) inevitably leads to

increased carbon emissions because of the consumption

of resources and the accretion of population in rapid

urbanization. Fragmented (high NP) or irregularly

shaped (high ED and PARA_MN) patterns of urban

land use likewise result in more carbon emissions.

Conversely, we found an urban sprawl that has an

aggregated and continuous pattern (high PLADJ and

COHESION) would be conducive to the reduction of

carbon emissions. Increases in both urban road density

(RD) and traffic coupling factor (CF) also promote the

reduction of carbon emissions. However, because it can

easily cause traffic congestion, urban form development

with a mononuclear pattern (high LPI) may accelerate

carbon emissions. Therefore, in the foundation of

compact development, the urban forms should trans-

form from the pattern of single-nuclei development to

that of multiple-nuclei development.

From the analytical results, we can conclude that

planning for future development should consider the

effects of different urban forms to reduce carbon

emissions. Currently, China is facing many serious

issues on ecology and environment resulting from its

rapid economic growth and urbanization process.

Maintaining a balance between sustainable develop-

ment and cutting down total carbon emissions remain

Table 9 Coefficients

estimated from panel data

analysis

* Significant at 0.10

** significant at 0.05

*** significant at 0.01

Variable Model 1 Model 2 Model 3

CA 1.2361*** (5.1557)

NP 2.0489*** (3.147317)

ED 0.5980* (1.0652)

PARA_MN 0.0710 (0.4239)

PLADJ -0.4986 (-0.0619)

COHESION -15.4681** (-0.8050)

LPI 3.3070*** (3.8720)

RD -1.2514*** (-2.0042)

CF -0.3391 (-0.0596)

Constant 67.1392* (0.6598) -2.1476* (-0.6880) 8.4131*** (4.7012)

R-squared 0.9360 0.8020 0.8611

F-statistic 31.6755 8.7773 13.4268

Prob(F-statistic) 0.0000 0.0006 0.0001
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important challenges for policy makers. One direct

solution to reduce carbon emissions is the reduction of

energy consumption. However, such a measure could

have a negative impact on economic growth. As

shown in this paper, constructing an ideal urban form

through urban planning and spatial optimization is a

critically important method of handling the carbon

emissions problem. Thus, the planning of future

development in China should take into account the

effects of urban forms, and make the urban pattern

more compact rather than disperse. Meanwhile, it

suggest that urban forms should be a spatial pattern of

the spool thread with poly-centers. From the above,

the findings obtained in this study could provide

important decision support in building China’s low-

carbon society.
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