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a b s t r a c t

This paper provides a new method for retrieving, evaluating and modifying urban signatures for simulating
compact development using urban cellular automata (CA). Urban CA usually adopt fixed transition rules
for simulating urban dynamics in large complex regions. However, these regions can be segmented into
sub-regions so that separate transition rules can be retrieved for generating better simulation results.
Moreover, urban signatures or “genes” can be extracted from GIS data to assist the understanding of
urban evolution for each sub-region. Good “genes” from a sub-region can be cloned to other sub-regions
for producing better urban forms. A heuristic swapping technique is developed to modify existing “genes”
so that compact development patterns can be generated for planning purposes. The proposed method has
been applied to the simulation of compact development in the Pearl River Delta. The analysis indicates
that this model can help improve the compactness of urban development in this fast growing region.

© 2008 Elsevier B.V. All rights reserved.

1. Introduction

The simulation and prediction of urban growth can provide key
inputs to many environmental and planning models. In the last two
decades, a set of urban models based on cellular automata (CA)
techniques were developed for better understanding of urban evo-
lution (Batty and Xie, 1994; Couclelis, 1997; Wu and Webster, 1998;
Ward et al., 2000; Li and Yeh, 2004a; Straatman et al., 2004; Herold
et al., 2005). Actually, CA were developed by Ulam in the 1940s and
soon used by Von Neumann to investigate the logical nature of self-
reproducible systems (White and Engelen, 1993). CA have powerful
modeling capabilities and high degree of reality when integrated
with GIS (Li and Yeh, 2000). These models have inherent advan-
tages in simulating various spatio-temporal processes by using
local interaction rules. They can model a variety of natural phenom-
ena in a way that is conceptually clearer, more accurate, and more
complete than conventional mathematical systems (Itami, 1994;
Weber and Puissant, 2003). Cities become computable in various
ways within the generic framework of CA models (Batty and Xie,
1994).

The core of CA is how to define transition rules, which can be
represented in many forms. For example, transition rules can be
represented by using weight matrices (White and Engelen, 1993),
the SLEUTH model (slope, landuse, exclusion, urban extent, trans-
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portation and hillshade) (Clarke and Gaydos, 1998), multicriterion
evaluation (MCE) (Wu and Webster, 1998), logistic regression (Wu,
2002), neural networks (Li and Yeh, 2002) and decision trees (Li
and Yeh, 2004a). In these methods, many variables are involved
for defining transition rules. Each variable is usually associated
with a parameter that indicates its importance in simulation. These
parameters significantly affect the outcomes of urban simulation
(Wu, 2002; Li and Yeh, 2002).

The calibration of CA is essential for simulating urban dynam-
ics of realistic cities (Silva and Clarke, 2002; Li and Yeh, 2002;
Straatman et al., 2004). However, existing methods are based on
a uniform set of parameters for simulating urban dynamics in a
whole region. This assumes that the relationships are fixed in the
spatio-temporal dimension. In reality, the relationships may be
complex between the state conversion (e.g. converted to urban
land or not) and its geographical variables, and discrepancy can
be created for the simulation based on a uniform set of transi-
tion rules. Heterogeneous development patterns can be observed
in large complex regions (Li and Yeh, 2004b). The irregularities of
development patterns can be attributed to localized physical, social
and political factors which cannot be captured by models. For exam-
ple, special land use policies can be adopted by local governments,
resulting in the changes in development patterns. A way to capture
these localized features is to divide the study region into some rel-
ative homogenous sub-regions based on segmentation methods.
Administrative boundaries may be used to divide a large region
into sub-regions since localized policies are usually implemented
within the jurisdiction of each sub-region.

0169-2046/$ – see front matter © 2008 Elsevier B.V. All rights reserved.
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Recently, some primitive efforts have been made to define the
signatures of a region according to the calibration of CA. Silva (2004)
perhaps is the first to propose the concept of “the DNA of our
regions” through the use of urban CA models. He suggests that CA
can be calibrated to produce realistic simulation and the use of the
calibration values of CA can have another function by identifying
DNAs of each region. This opportunity arises from the possibility
of defining a “signature” that identifies the uniqueness of a region
without compromising its universality. His experiments are based
on the SLEUTH CA which has five control parameters for the growth
components of diffusion, breed, spread, slope resistance, and road
gravity. A key of numbers resulting from the calibration process can
be used to reflect the local characteristics of a region. Cloning a DNA
to another region can have very different results. This also indicates
that the shift of existing policies can lead to unexpected results.

Urban morphology is an important element in urban planning.
Compact development should be promoted so that less land will be
consumed by development (Jenks et al., 1996). There are evidences
indicating a strong link between urban form and sustainable devel-
opment, although it is not simple and straightforward. Significant
relationships have been found between energy use in transport and
physical characteristics of cities, such as density, size, and amount
of open space (Banister et al., 1997).

Dispersed development patterns have been witnessed in some
fast growing cities in China. For example, land development is
in a rather fragmented form in the Pearl River Delta (Li and Yeh,
2004b). A series of land use problems are associated with sprawl
development, including increases in development costs, energy
consumption and wasteful use of land resources (Yeh and Li, 2001).
Simulation of compact urban forms is the first step toward the
implementation of this compact development initiative. Urban
signatures play a key role in determining urban morphology in
urban simulation.

The objective of this study is to explore the relationships
between urban signatures and compact development. Methodolo-
gies are developed for retrieving, cloning and modifying urban
signatures by using urban CA. A large complex region is first seg-
mented into a number of sub-regions according to administrative
boundaries. A set of “genes” is retrieved for each sub-region by
using GIS data. Genetic algorithms are used to assist the search for
these “genes” since they are difficult to obtain for non-linear equa-
tions. These “genes” are then evaluated according to some spatial
metrics. The modification of “genes” is finally carried out by using
a heuristic swapping technique. The proposed method should be
useful for simulating compact urban development under various
assumptions for planning purposes.

2. The study area

The study region constitutes the core of the Pearl River Delta
with an area of about 41,157 km2, situated in the central part of
Guangdong, south China. The fertile delta is very suitable for agri-
cultural production. However, a large amount of land use changes,
associated with the loss of a significant amount of agricultural land,
has been observed in this fast growing region since the economic
reform in 1978 (Li and Yeh, 2004b).

Localized features of growth patterns can be observed in this
large complex area. For example, two significantly different growth
patterns can be visually identified for two neighboring cities in the
Pearl River Delta (Fig. 1). This region can be segmented into a num-
ber of sub-regions for capturing the complexity of urban dynamics.
In this research, the study area is divided into six major sub-regions
based on the administrative boundaries of cities. They are the cities
of Guangzhou city proper, Zengcheng, Conghua, Shenzhen, Dong-
guan and Zhongshan (Fig. 2). A major land use problem in the study

Fig. 1. Two significant growth patterns identified for two neighboring cities in the
Pearl River Delta.

area is related to sprawl development along transport networks
(Yeh and Li, 2001). It can be easily identified from the classification
of remote sensing images (Fig. 3).

Spatial variations of land use patterns and development pro-
cesses can be identified among these cities (Li and Yeh, 2004b). This
can be attributed to the differences in geographical locations and
localized land use policies. Fig. 4 illustrates the validity of the seg-
mentation which is based on the administrative boundaries. There
is a strong conformity between the transition of growth patterns
and the administrative boundaries. This indicates that administra-
tive boundaries can be used to differentiate the growth patterns for
this aggregate region.

3. Capturing and modification of urban signatures using
cellular automata

3.1. Capturing urban signatures

Cellular automata consist of four elements–cells, states (e.g.
urbanized or non-urbanized), neighborhoods, and transition rules.
The definition of transition rules is essential for implementing CA.
In an urban CA, transition rules are usually represented by using a
probability function which determines if land use conversion will
take place (Wu and Webster, 1998). This involves a number of spa-
tial variables that represent various forces in urban evolution. The
combined effects of these forces can be addressed by incorporat-
ing multicriteria evaluation (MCE) into cellular automata (Wu and
Webster, 1998).

The development probability is determined by a combined
evaluation score rij, of which nonlinear transformation is used to
discriminate the simulation patterns (Wu and Webster, 1998):

pt
ij = �(rt

ij) = exp

[
˛

(
rt
ij

rmax − 1

)]
(1)

where ˛ is a dispersion parameter ranging from 0 to 1; rt
ij

is the
combined evaluation score at location ij; rmax is the maximum value
of rt

ij
.

The composite evaluation score (rt
ij
) is calculated by using the

following linear equation:

rt
ij = a0 + a1xt

1 + a2xt
2 + · · · + amxt

m + · · · + aMxt
M (2)

where a0 is the constant; xt
1, xt

2, . . . , xt
m, . . . , xt

M are spatial vari-
ables representing the driving forces for land development;
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Fig. 2. A complex region with a hierarchy of cities.

a1, a2, . . ., am, . . ., aM, are the parameters (weights) of these
variables.

It is straightforward to understand the meanings of the weights
in the MCE expression. A larger weight indicates that the asso-

Fig. 3. Urban sprawl along roads in the Pearl River Delta according to classified TM
images.

ciated variable makes a greater contribution to the development
probability. However, this MCE-CA model cannot be calibrated
for simulating realistic cities. A modification of this model is
to transform it into a logistic form so that the calibration is
possible (Wu, 2002):

pt
ij =

exp(−rt
ij
)

1 + exp(−rt
ij
)

= 1
1 + exp(−rt

ij
)

(3)

Urban development is subject to a series of physical constraints
and some uncertainties. By incorporating a series of constraints
plus a stochastic factor, the above equation can be further revised
as follows:

pt
ij = (1 + (− ln �)˛) × 1

1 + exp(−rt
ij
)

× con(st
ij) × ˝t

ij (4)

where � is a stochastic factor ranging from 0 to 1, ˝t
ij

is the devel-

opment intensity in the neighborhood, and con (st
ij
) is the total

constraint score ranging from 0 to 1.
The terms of rt

ij
, ˝t

ij
and con (st

ij
) are dynamically updated during

CA simulation. At each iteration, pt
ij

is compared with a threshold
value to determine if a non-urbanized cell will be converted into
urbanized cell:

IF pt
ij

> Threshold and cell ij is undeveloped,
THEN The state of the cell will be converted into urban land.

The parameters associated with these spatial variables in the CA
model have crucial effects on determining state conversion (urban
dynamics) in the simulation. They are analogous to the “genes”
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Fig. 4. Conformity between the transition of growth patterns and the administrative
boundaries (a). (b) Profile of land development

in biology because they have a unique role in representing urban
evolution during simulation. Since there are significant spatial vari-
ations of growth patterns in a large region (Li and Yeh, 2004b), the
use of a single set of “genes” or urban signatures may not be suit-
able for simulating land use dynamics. An aggregated region usually
consists of many sub-regions, such as a number of cities and towns.
It is preferable to partition this region into a number of sub-regions.
Each sub-region can be associated with a unique set of “genes” to
capture local characteristics in urban development. When a region

is divided into a number of sub-regions, the transition rules in Eq.
(3) can be revised as follows:

pt
ij,k =

exp(−rt
ij,k

)

1 + exp(−rt
ij,k

)
= 1

1 + exp(−rt
ij,k

)
(5)

where rt
ij,k

= a0,k + a1,kxt
1,k

+ a2,kxt
2,k

+ · · · + am,kxt
m,k

+ · · · +
aM,K xt

M,k
( k = 1, 2, · · ·, K), K is the total number of sub-regions.

xt
m,k

is the mth variable for sub-region k and am,k is the weight of
the variable.

Therefore, the set of urban signatures (CM) for sub-region k can
be represented as follows:

CM = [a0,k, a1k, . . . , am,k, pthreshold,k] (6)

Conventional calibration procedures have difficulties in deter-
mining the above signatures because they are not in a linear form.
In this study, a genetic algorithm (GA) is used to find the optimal
set of urban signatures for each sub-region, which is crucial for pro-
ducing realistic simulation results. GA has advantages in solving a
lot of complex optimization problems in many disciplines because
specific programs are not required (Goldberg, 1989). The optimiza-
tion procedure is based on the concept of natural selection which
controls the evolution process in biology. GA is excellent for quickly
finding an approximate global maximum or minimum value. More-
over, the form of GA is generally applicable to a variety of complex
optimization problems.

Fitness functions should be defined for finding the optimal
parameters of the CA model. Fitness functions are used to indicate
the performance of each solution or individual (chromosome) in
solving an optimal problem. The definition of fitness functions is
domain-dependent.

In this study, the fitness function is defined by calculating the
difference between the actual state (e.g. urbanized or not) and the
predicted state. The optimal set of parameters should produce the
minimum value (the least error) of the fitness function. Therefore,
the fitness function is represented as follows:

f (x) =
n∑

i=1

(
�
f i − fi)

2 (7)

�
f i =

{
1 if

�
f i ≥ pthreshold

0 if
�
f i < pthreshold

where

�
f i(x1, x2, · · ·, xm) = 1

1 + exp(−(a0,k + a1,kx1,k + a2,kx2,k

+· · · + am,kxm,k + · · · + aM,K xM,K ))

.

fi is the actual state (fi = 1 for urbanized cells; fi = 0 for non-
urbanized cells).

The actual state is obtained from the classification of remote
sensing imagery. The predicted state is calculated by using the logis-
tic model. The whole region is divided into a number of sub-regions
(e.g. cities) based on the administrative boundaries. The GA pro-
gram is used to find the optimal set of urban signatures for each
sub-region. These retrieved urban signatures will control urban
evolution for each city in the simulation.

3.2. Modifying urban signatures for simulating compact
development

Urban forms should be ‘more compact and humane’, instead of
the increasing sprawl of metropolitan development (Bourne, 1992).
It is expected that some “genes” can have better performances in
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terms of compact development. The evaluation of urban morphol-
ogy can help identify these good “genes”. The assessment is carried
out by using some common landscape metrics, which can provide
a detailed description of the accuracy of the model’s historical sim-
ulations (Herold et al., 2003). These spatial metrics include mean
patch shape index (MPSI), mean patch fractal dimension (MPFD),
mean Euclidean nearest-neighbor (MNN) distance, and aggregation
index (AI). These metrics are selected because they are related to the
compactness of urban forms. They are calculated at the landscape
level for each city by using a landscape analysis package, FRAGSTATS
3.3 (McGarigal and Marks, 1995).

Mean patch shape index is given as follows (McGarigal and
Marks, 1995):

MPSI = 0.25
∑n

i=1Pi√∑n
i=1Ai

(8)

where MPSI is mean patch shape index, Pi is the perimeter of patch
i, Ai is the area of patch i in terms of number of cells, n is the total
number of patches. MPSI increases as patch shape becomes more
irregular.

Mean patch fractal dimension is calculated as follows
(McGarigal and Marks, 1995):

MPFD =
∑n

i=1[2 ln(0.25Pi)/ ln(Ai)]

n
(9)

where MPFD is mean patch fractal dimension. MPFD approaches
1 for shapes with very simple perimeters such as squares, and
approaches 2 for shapes with highly convoluted, plane-filling
perimeters.

Mean Euclidean nearest-neighbor distance is represented by
(McGarigal and Marks, 1995):

MNN =
∑n

i=1hi

n
(10)

where MNN is mean Euclidean nearest-neighbor distance, hi is the
distance from patch i to nearest neighboring patch of the same type
(class) i, based on patch edge-to-edge distance, computed from
cell centre to cell centre. MNN decreases as patches become more
compact.

Aggregation index is expressed by the following equation
(McGarigal and Marks, 1995):

AI =
[

gii

max gii

]
× 100 (11)

where AI is aggregation index, gii is the number of like adjacen-
cies (joins) between pixels of patch type (class) i based on the
single-count method. max gii is the maximum number of like adja-
cencies (joins) between pixels of patch type (class) i based on the
single-count method. max gii is expressed as follows (McGarigal
and Marks, 1995):

max gii =
{

2n(n − 1) , m = 0
2n(n − 1) + 2m − 1, m ≤ n
2n(n − 1) + 2m − 2, m > n

(12)

where m = ai − n2, ai is the area of class i (in terms of number of
cells) and n is the side of a largest integer square smaller than ai. AI
equals 0 when the focal patch type is maximally disaggregated (i.e.,
when there are no like adjacencies); AI increases as the focal patch
type is increasingly aggregated and equals 100 when the patch type
is maximally aggregated into a single, compact patch.

Since MPSI, MPFD, MNN, AI are measured at different scales.
These metrics should be normalized so that they can be compared.

The following equation is used for the normalization:

x′
i = x − xmin

xmax − xmin
(13)

These normalized metrics can be combined to form a final utility
function (U) by representing all these morphological effects. This
utility function is defined as follows:

U = 1
4

((1 − NMPSI) + (1 − NMPFD) + (1 − NMNN) + NAI) (14)

where NMPSI, NMPFD, NMNN, and NAI are the normalized MPSI,
MPFD, MNN and AI, respectively. U is the combined utility func-
tion. The higher the utility value, the better the urban morphology
becomes in terms of compact development.

The spatial data are stored in ARCGIS GRID data format, which
can be imported to FRAGSTATS 3.3 for the calculation of these met-
rics. The best set of “genes” can be identified according to this utility
function. This set of “genes” can be cloned to other sub-regions to
produce better urban forms. For example, the “genes” of the city
proper can be used to replace those of other cities.

Directly cloning these “genes” may not be the best option since
land use problems in a city can be propagated to other cities. A
solution is to modify existing “genes” based on the assessment of
their performance. Different parts of “genes” will play specific roles
in controlling urban morphology. For example, some “genes” will
result in road-based development, but others will produce town-
centre-based development. “Genes’ can be modified to produce
more compact growth scenarios under various planning objectives.

The study area consists of a hierarchy of centres, a number of
major centres (city centres) and many sub-centres (town centres).
Therefore, compact development can be implemented in a mono-
centric form (around city centres) or a polycentric form (around
town centres). Two options are then available for modifying the
existing best “genes” (e.g. the “genes” of the city proper) before they
are used for the whole region. These two options of modification
include: (1) “city centers transport” concentrated development;
(2) “town centers transport” concentrated development. The first
option is to address the trade-off between the attractions from city
centres, plus transport networks. Most of the land development is
attracted by city centres, but some by transport networks, such as
roads, railways, and expressways. The second option is to address
the trade-off between the attractions from town centres, plus trans-
port networks. Most of the land development is attracted by town
centres, but some by transport networks.

The “genes” from the most compact city (e.g. the city proper) are
used as the starting point for the modification. A heuristic swapping
technique is proposed for the search for better “genes” compared
to the existing ones. The search is constrained by the total amount
of land use conversion, which is obtained from the classification
of remote sensing images. This is to ensure that the total amount
of land use conversion is the same between the simulated and
the actual (expected). The new “genes” are obtained by interactive
modification of the weights between city centres, town centres and
roads.

The detailed procedure of modification for “city centres trans-
port” concentrated development is as follows:

(1) The initial weights (aM,K) are set to the minimum absolute
value (−0.0001) for all the variables, such as city centres, roads,
railways, and expressways (Fig. 5a). This is to guarantee the
minimum attraction to these factors.

(2) The absolute weight for the variable of urban centres will then
be increased, constrained by the total amount of land con-
version. The constraint is to guarantee that the amount of
the simulated land conversion is equal to that of the actual
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Fig. 5. Obtaining new “genes” by interactive modification of the attractions between city centres and roads.

(expected). This increase will result in a higher amount of land
development around urban centres, and a lower amount of land
development around transport networks. It will thus create
a polarized effect of land development around urban centres
(Fig. 5b).

(3) The modification is also applied to the absolute weight for
transport networks. This change will result in a higher amount
of land development around transport networks, and a lower
amount of land development around urban centres. It will thus
create a polarized effect of land development around transport
networks (Fig. 5c).

(4) Repeat steps (2) and (3) again until the urban form cannot be
further improved significantly in terms of compact develop-
ment (Fig. 5d).

The same procedure can be used to modify these “genes” for
“town centres-transport” concentrated development. This method
provides a transparent tool for formulating alternative develop-
ment scenarios, which links the patterns to processes by using the
concept of “genes”.

4. Implementation and results

4.1. Mining urban signatures for simulating realistic development
patterns

Urban “genes” are defined to characterize a region for predicting
and regulating urban dynamics. The “genes” for simulating realis-
tic urban growth are obtained by using empirical data from remote
sensing and GIS. The dependent variable, land use conversion, was
obtained by the classification of the Landsat TM images dated 10
December 1988 and 24 December 1993, respectively. The accu-
racy assessment for land use classification was carried out with
reference to available land use maps, air photographs and field
investigation. The total accuracy is 0.87 and the kappa coefficient is
0.83 according to the accuracy assessment (Li and Yeh, 2004b). The
independent variables, a series of spatial variables (e.g. proximity
to centres), were retrieved by using GIS functions.

In this study, the set of “genes” for each sub-region was obtained
by using a genetic algorithm (GA). Stratified random sampling
(Congalton, 1991) was first employed to collect the samples from
remote sensing and GIS. 10% of the original data were selected in

Table 1
Retrieved urban “genes” for the cities in the Pearl River Delta

a0,k a1,k a2,k a3,k a4,k a5,k Pthreshold

Guangzhou 1.476 −0.00079 −0.00794 −0.02519 −0.00245 −0.00402 0.445901
Zengcheng 1.500 −0.00089 −0.00010 −0.02048 −0.00010 −0.00032 0.512726
Conghua 1.500 −0.00088 −0.00872 −0.02832 −0.00010 −0.00010 0.542195
Shenzhen 1.500 −0.00010 −0.00480 −0.01656 −0.00794 −0.00010 0.512844
Dongguan 0.978 −0.00010 −0.00559 −0.01421 −0.00167 −0.00010 0.729893
Zhongshan 1.034 −0.00089 −0.00010 −0.02205 −0.00167 −0.00010 0.559767
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Fig. 6. Realistic simulation of urban growth for the cities in the Pearl River Delta in 1988–2004. (a) Actual and (b) simulated.

the classified remote sensing imagery as the training data. These
data were then used to calculate the fitness function for the GA
programming.

In this study, the population size was set to 100. The initial value
of a0,k was 0.5, and all the initial values of a1,k, . . ., am,k, . . ., aM,K,
were −0.01. The crossover rate and the mutation rate were 0.90 and
0.01, respectively. The strategies of elitist selection and diversity
operation were also adopted to facilitate the search for the optimal
parameters.

Table 1 shows the retrieved “genes” for simulating urban evolu-
tion in this region. Distinct sets of “genes” are obtained for different

cities in this region. Each set of “genes” will control the unique evo-
lution of urban morphology for a city. Traditional methods have
difficulties in determining these parameters because of the com-
plexities.

These “genes” can be applied for generating realistic urban
growth without any modifications (Fig. 6b). They can be used to
simulate urban development in the same period (1988–1993) from
which the empirical data were obtained, and predict urban devel-
opment in the “future” period (1993–2004) based on the growth
trajectory. Very plausible results have been obtained by using these
“genes” to simulate urban development in 1988–2004, although
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Table 2
Comparison of simulation accuracies between using separate transition rules and
using unified transition rules

Simulated
non-urban

Simulated urban Accuracy (%)

(A) Separate transition rules
1988–1993 (cells)

Actual non-urban 906188 80750 91.82
Actual urban 236621 505090 68.10
Total accuracy (%) 81.64
Kappa coefficient 0.62

1993–1997 (cells)
Actual non-urban 667065 88293 88.31
Actual urban 256176 717115 73.68
Total accuracy (%) 80.07
Kappa coefficient 0.60

1997–2004 (cells)
Actual non-urban 397942 95836 80.59
Actual urban 275731 899140 76.53
Total accuracy (%) 77.73
Kappa coefficient 0.52

(B) Unified transition rules
1988–1993 (cells)

Actual non-urban 856626 137255 86.19
Actual urban 273166 475380 63.51
Total accuracy (%) 76.45
Kappa coefficient 0.51

1993–1997 (cells)
Actual non-urban 617503 144798 81.01
Actual urban 292721 687405 70.13
Total accuracy (%) 74.89
Kappa coefficient 0.50

1997–2004 (cells)
Actual non-urban 408380 152341 72.83
Actual urban 322276 859430 72.72
Total accuracy (%) 72.76
Kappa coefficient 0.42

these “genes” are retrieved by using empirical data in 1988–1993.
This is conformed by comparing the simulated patterns (Fig. 6b)
with the actual patterns (Fig. 6a) which is obtained by classifying
remote sensing data. This indicates that CA have a strong capability
of predicting urban development if they have been calibrated by
using empirical data.

This proposed model is based on separate transition rules
obtained by dividing the whole region into six sub-regions accord-
ing to the administrative boundaries. Comparison indicates that the
simulation accuracies of using separate transition rules are much
better than those of using unified transition rules (Table 2). The total
accuracy and kappa coefficients of using separate transition rules
are 81.64% and 0.62 for 1988–1993, 80.07% and 0.60 for 1993–1997,
and 77.73% and 0.52 for 1997–2004, respectively. However, the total
accuracy and kappa coefficients of using unified transition rules are
76.45% and 0.51 for 1988–1993, 74.89% and 0.50 for 1993–1997, and
72.76% and 0.42 for 1997–2004, respectively.

4.2. Modifying urban signatures for simulating compact
development patterns

It is obvious that the simulation based on the “genes” mined
from the empirical data will inherit the past sprawl patterns.
Modification of urban “genes” is required to produce possible devel-
opment alternatives to avoid these land use problems. Table 3 lists
the results of assessing the actual urban forms of various cities in
the study area. It is found that Guangzhou city proper has the largest
value of the combined utility function. This provincial capital has
the most compact form because of its implementation of strict

Table 3
Assessment of the urban forms for the cities in the Pearl River Delta using spatial
metrics

MPSI MPFD MNN AI U

Guangzhou 1.3789 1.0507 143.2747 69.7479 1.0000
Zengcheng 1.4712 1.0712 171.8017 58.2507 0.4349
Conghua 1.4224 1.0748 197.2318 39.6987 0.2444
Shenzhen 1.4983 1.0559 161.6018 68.7973 0.6676
Dongguan 1.5213 1.0603 172.5922 55.7620 0.4367
Zhongshan 1.4920 1.0647 218.5303 55.1756 0.2850

Table 4
Comparison of the simulated urban forms between using the original “genes” and
using the cloning “genes”

MPSI MPFD MNN AI U

The original genes 1.4988 1.0657 258.7611 78.5389 0.0000
Cloning the “genes” of the

city proper
1.4409 1.0586 249.6434 79.4347 0.4350

Table 5
Modified “genes” for “city centres transport” concentrated development

a0,k a1,k a2,k a3,k a4,k a5,k

1.2 −0.00183 −0.0001 −0.018 −0.0001 −0.0001

development control. The whole region can have a better urban
form if other cities can follow the behavior of the city proper. This
can be realized by cloning these “genes” from the city proper to
other cities.

Fig. 7b shows the results of simulating the development patterns
of the whole region by using the “genes” of the city proper. Cloning
these genes to the whole region has resulted in a significant increase
of compactness for the whole region. This fact is supported by the
significant increase of the combined utility value (Table 4). There-
fore, this proposed method can produce not only a compact but also
a practical form by cloning the realistic good “genes”. It is possible to
generate a complete compact form, but this form may not be prac-
tical. This proposed method is useful for creating a more acceptable
urban form, assuming that the mechanism of urban development
in the city proper is applicable to other cities.

A further improvement is to modify the “genes” of the city
proper before the cloning. This is because the sprawl pattern is
also obvious in the city proper. Therefore, the “genes” controlling
land development should be modified to reduce this sprawl pat-
tern for the whole region. The swapping technique was used to
modify the “genes” for producing the scenario of “city centres trans-
port” concentrated development. The modified “genes” are shown
in Table 5. Fig. 7c is the simulation results based on this set of
modified “genes”.

The same procedure was applied to the derivation of the “genes”
for “town centres transport” concentrated development. Table 6
shows the retrieved “genes” according to this modification. The
simulation outcome based on this set of modified “genes” is shown
in Fig. 7d.

The performances of the above development options were
assessed in terms of compact development. Table 7 lists the
improvement of the combined utility value for these options, com-
pared to the realistic development. There is an improvement of
the utility by directly using the “genes” of the city proper. More

Table 6
Modified “genes” for “town centres transport” concentrated development

a0,k a1,k a2,k a3,k a4,k a5,k

1.2 −0.0023 −0.0023 −0.0023 −0.0001 −0.0001
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Fig. 7. Simulation of compact cities in the Pearl River Delta in 2004: (a) realistic simulation (original retrieved “genes”); (b) using the “genes” of the city proper (Guangzhou’s
“genes”); (c) modified genes for “urban centre road” development; (d) modified genes for “town centre road” development.

Table 7
Improvement of the combined utility value for various development alternatives

MPSI MPFD MNN AI U

The original genes 1.4988 1.0657 258.7611 78.5389 0.0000
Cloning the genes of the

city proper
1.4409 1.0586 249.6434 79.4347 0.4350

“City centres transport”
concentrated

1.3529 1.0521 249.2032 84.2656 0.9242

“Town centres transport”
concentrated

1.3965 1.0566 245.0450 81.4199 0.7183

improvement of the utility is obtained by modifying these existing
“genes” according to this heuristic method.

5. Conclusion

This study indicates that cellular automata can become a use-
ful exploratory tool for formulating compact development. Rapid
urban development has resulted in intensive land use conflicts
in many fast growing countries. Compact development can be
formulated to alleviate land use problems in these regions. The
simulation, prediction, and optimization of urban development are
essential for promoting compact cities. CA can be used to simulate
the evolution of cites by using local rules. These models can be also
used to assist land use planning by incorporating planning objec-
tives in the simulation. In urban CA, the contribution of each spatial
variable to the simulation outcomes is quantified by its parameter
or weight. Each set of parameters can be analogous to “genes” in
biology because they control the process of urban evolution in the
simulation.

In this paper, the “genes” related to urban morphology are deter-
mined by a calibration procedure. Genetic algorithms are used to
find suitable “genes” of each sub-region by using empirical data
from remote sensing and GIS. Better simulation results can be
obtained by using separate transition rules instead of unified ones.
There are spatial variations of urban dynamics in a large complex
region due to localized land use policies. It is better to divide a
complex region into sub-regions for producing more consistent
simulation results.

Some good “genes” can be identified according to the assess-
ment of urban morphology using some spatial metrics. The
morphological utility can be conveniently calculated after the clas-
sification of remote sensing images. It is possible to produce better
urban forms by replacing existing “genes” with better “genes” based
on the assessment. The “genes” of good performance can be cloned
from a city to other cities to improve urban morphology.

The existing “genes” can be further modified according to a
heuristic swapping method. This provides an operational method
to create more compact patterns around urban centres, town cen-
tres, and transport networks. The modification is accomplished by
the interactive increase of the polarized effect of land development
around urban centres, town centres and transport networks. Exper-
iments indicate that significant improvement of the utility in terms
of urban morphology is obtained by modifying existing “genes”.
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