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Abstract

A novel method which integrates polarimetric decomposition,

object-oriented image analysis, and decision tree algorithms is

presented for land-use and land-cover (LULC) classification
using RADARSAT-2 polarimetric SAR (POLSAR) data. Polarimetric
decomposition which is aimed at extracting polarimetric
parameters related to the physical sc aftmmo mechanisms of
the observed objects can be used to support the classification
of PoLSAR data. The main purposes of object-oriented image
analysis are delineating image objects as well as extracting
various textural and spancu’ features from image objects to
improve classification accuracy. A decision tree algorithm
provides an efficient way to select features and unphum(nt
classification. Compared with the Wishart supervised classifi-
cation which is based on the coherency matrix, the proposed
method can significantly improve the overall accuracy and
kappa value of LULC classification by 17.45 percent and 0.24,
respectively. Further investigation was carried out on the
contribution of polarimetric decomposition, object-oriented
image analysis, and decision tree algorithms to the improve-
ment achieved by the proposed me thod. The inve stigation
shows that all these three methods contribute to the
improvement achieved by the proposed method.

Introduction

Land-use and land-cover (LULC) information is essential for
urban planning and management. Remote sensing data
obtained from different optical sensors have been commonly
used to characterize and quantify LULC information (Imhoff
et al., 1997; Ridd and Liu, 1998; Sutton, 2003). However.,
conventional optical remote sensing is limited by weather
conditions. Hence, it has difficulties in collecting timely
LULC information in regions that are characterized by
frequent cloud cover. Radar remote sensing, which is not
affected by clouds, is therefore an effective tool for extract-
ing timely LULC information in such regions.
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Early studies on the use of radar remote sensing to
investigate LULC information have been mainly based on
airborne radar imagery and simple classification methods
(Henderson, 1975; Henderson, 1977; Henderson, 1979).
Many pioneer and detailed studies have been carried out
using the space shuttle SIR-C/X-SAR (Kasischke et al., 1997;
Saatchi et al., 1997; Pierce et al., 1998). Although the results
of these studies are positive, airborne radar imagery systems
are only occasionally launched to collect experimental data
within a very short period. Therefore, it is not practical to
use airborne radar imagery to investigate timely LULC
information. After the availability of operational orbital
radar systems with SAR, such as the ERS-1 and ERS-2, JERS-1,
and RADARSAT-1, the acquisition of timely LULC information
using SAR images has become practical. However, most of
the existing nrbltal SAR systems are single- frequem\ tvpes
and may create confusion during the separation and map-
ping of LULC classes; this confusion stems from the limited
information obtained by single-frequency systems (Ulaby
et al., 1986; Leiss et al., 1996; Li and Yeh, 7[]04)

To overcome the diff iculty presented by single-frequency
SAR data, some researchers utilized polarimetric SAR (POLSAR)
data to extract LULC information (Pierce et al., 1994: Du and
Lee, 1996; Lee et al., 2001; Freitas et al., 2008). The results
show that POLSAR measurements achieve better classification
results than single-polarization SAR. The classification of
POLSAR images has become an important research topic since
POLSAR data have been made available through ENVISAT ASAR,
ALOS PALSAR, and RADARSAT-2. Classification methods for
POLSAR images have been examined by many researchers
(Rignot et al., 1992; Hara et al., 1994; Chen et al., 1996:
Tzeng and Chen, 1998; Barnes and Burki, 2006). Recently,
some polarimetric decomposition theorems have been
examined (Cloude and Pottier, 1996; Freeman and Durden,
1998; Yang et al., 1998; Carrea and Wanielik, 2001; Cameron
and Rais, 2006), and classification methods based on decom-
position results have been examined (Cloude and Pottier,
1997; Lee et al., 1999a; Pottier and Lee, 1999; Ferro-Famil
et al., 2001). Thus far, however, most of the classification
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methods for POLSAR images are pixel-based and can only
utilize the tonal information of pixels. Purely pixel-based
approaches have limitations in representing objects in high-
resolution images; thus, they have difficulties in utilizing the
textural and spatial information of POLSAR images. Moreover,
the results of pixel-based methods are insufficient for
extracting objects of interest and expediently updating
geographical information system databases.

Object-oriented image analysis has been increasingly
used for the c]d551f1(:at1011 of remote sensing data (Evans
et al., 2002; Geneletti and Gorte, 2003; Gao et al. , 2006; Li
et al., 2008; Li et al., 2009; Watts et al., 2009). In object-
oriented image analysis, a feature is an attribute that repre-
sents information concerning the objects under study. Given
that regions in an image provide considerably more informa-
tion than do pixels, many different image object features for
measuring the color, shape, and texture of the associated
regions can be used. By delineating objects from remote
sensing images, object-oriented image analysis enables the
acquisition of a variety of additional spatial and textural
features, which are important for improving the accuracy of
remote sensing classification (Benz et al., 2004). Further-
more, image objects are much easier to manipulate and
utilize than in pixels. However, with the addition of textural
and spatial features, hundreds of features can potentially be
incorporated into the object-oriented classification of POLSAR
data. Therefore, feature selection presents a problem in the
object-oriented classification of PoLSAR data. Using all
available features in classification is improper because
computation is intensive and some features may degrade
classification performance. Since the recent introduction of
polarimetric decomposition theorems, which have brought
about much more polarimetric information, the problem of
feature selection has become more intractable.

Decision tree algorithms can be used to solve the
problem of feature selection. Decision trees are commonly
used for the selection of variables in classification (Lawrence
and Wright, 2001). By examining the effects of every input
feature to determine every split in the final tree, decision
tree algorithms can efficiently deal with the problem of
feature selection in classification. Some studies have shown
that decision trees can provide an accurate and efficient
method for LULC classification with remote sensing (Friedl
and Brodley, 1997; Swain and Hauska, 1977; Mclver and
Friedl, 2002; Kandrika and Roy, 2008). The improvement
achieved by the integration of object-oriented image analysis
and decision tree algorithms in the classification of multi-
spectral optical data has been demonstrated (Watts et al.,
2009). However, there is still a general lack of studies on the
integration of these two methods for the classification of
POLSAR data.

The objective of this study is to examine a new
method for LULC classification using RADARSAT-2 POLSAR
data. The new method is based on the integration of
polarimetric decomposition, object-oriented image analy-
sis, and decision tree algorithms. First of all, polarimetric
parameters were extracted using the Pauli and H/A/Alpha
decompositions. Next, the extracted polarimetric parame-
ters were combined with the backscattering matrix ele-
ments and the coherency matrix elements to form a
multichannel image. Then, during the object-oriented
image analysis, image objects were delineated by imple-
menting multi-resolution segmentation on the Pauli color-
coded image of RADARSAT-2 POLSAR data. Meanwhile, a total
of 1,161 features were extracted from each image object.
After this, a decision tree algorithm was used to select
features and create a decision tree for the LULC classifica-
tion. Finally, the LULC classification was implemented
using the constructed decision tree.
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Study Area and Data
The study area is in Panyu District of Guangzhou City in
Southern China with latitudes 22°51' to 22°58' and longitudes
113°20" to 113233’ (Figure 1). Panyu lies at the heart of the
Pearl River Delta. It has a total land area of 1,314 km* as well
as a population of 926,542, This district was an agricultural
area before the economic reform in 1978, but has been
transformed recently into an urban area. Since Panyu became
a district of Guangzhou in July 2000, intensive land develop-
ment has been implemented to provide housing to the
residents of Guangzhou City. Huge profits have been generated
through property development, which resulted in the increase
in land speculation activities and illegal land devalopmont.
Some illegal land development pro]e(,t% have caused irre-
versible environmental problems, such as forest degradation,
soil erosion, and adverse effects on species diversity. Timely
and accurate LULC information is important for the local
government to create management policies for the control and
prevention of illegal development at its early stage.
RADARSAT-2 is the world’s most advanced commercial
C-band SAR satellite. It follows the same orbit, repeat cycle,
and ground track as RADARSAT-1. RADARSAT-2 is designed with
significant and powerful technical advancements, one of
which is multi-polarization. RADARSAT-1 provides horizontal-
transmit and horizontal-receive (HH) data only, while
RADARSAT-2 can transmit horizontal (H) and vertical (V)
polarizations depending on the selected mode. Each scattering
element (HH, VV, HV, and VH) has varying sensitivities to
different surface characteristics and properties, thereby helping
to improve the discrimination among different LULC types. As
RADARSAT-2 is a newly launched sensor, the quantitative
investigation on the potential of RADARSAT-2 POLSAR data in
LULC classification is still lack. In this study, a RADARSAT-2
Fine Quad-Pol image (Single Look Complex) acquired on 21
March 2009 was used for extracting LULC information (Plate 1a).
The image has a full polarization of HH, HV, VH, and VV, a
resolution of 5.2 m X 7.6 m, and an incidence angle of 31.5°.
LULC classes in the study area can be summarized into
four categories: built-up area, water, barren land, and
vegetation. The field investigation was carried out simulta-
neously with the acquisition of the RADARSAT-2 image to
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Figure 1. Study area for LULC classification using
RADARSAT-2 PoLSAR data in Guangzhou.
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Plate 1. (a) RADARSAT-2 PoLSAR image of the study area (Pauli color-coded image), and
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collect ground truth. An ALOS image of the 10-meter multi-
spectral bands, acquired on 31 November 2008, was used as
a reference map to facilitate the collection of ground truth
(Plate 1b). In the field investigation, a total of 402 field plots
were selected across typical LULC classes using a clustered
sampling approach (McCoy, 2005). In terrain with poor
access, this sampling approach enables the use of most of
the accessible sites. GPS was used to record the coordinates
of these field plots. On the basis of the experience with
multinomial distribution (Congalton and Green, 2009), a
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minimum of 50 samples were collected for each category.
The sampling size per field plot in the image ranged from
39 to 603 pixels, which was determined using the ground
coverage in the photos taken during the fieldwork. The
collected field plots were divided into two groups for
training and validation. There were 200 plots in the training
group and 202 plots in the validation group (Figure 2). The
first group was used to select features and create a decision
tree for classification, while the second group was used to
verify the results of the classification.
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Figure 2. Collected samples across typical LuLc classes in the study area.
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Polarimetric Decomposition

Polarimetric decomposition is aimed at extracting physical
information from the observed scattering of microwaves by
the surface and volume structures of ground objects for the
classification of scattering data. The polarimetric parameters
extracted using polarimetric decomposition techniques are
related to the physical properties of the observed targets and
can be used to support the classification of PoLSAR data.
Many polarimetric decomposition methods have been
proposed (Huynen, 1970; Cloude and Pottier, 1996; Freeman
and Durden, 1998; Yang et al., 1998; Carrea and Wanielik,
2001; Cameron and Rais, 2006). In this study, the focus was
on the Pauli decomposition (Cloude and Pottier, 1996) and
the H/A/Alpha decomposition (Cloude and Pottier, 1997),
which are well-known decomposition methods commonly
used for POLSAR data.

Pauli Decomposition

As the RADARSAT-2 data is fully polarimetric, complete
information on the 2 X 2 complex backscattering matrix S
can be expressed as:

S {SI-H-I

LS}.]'_‘Jr ]
(1)
Svu

SVV

where Sy and Syy denote the copolarized complex
scattering amplitudes, and Syy and Syy denote the cross-
polarized complex scattering amplitudes. The total
received power from the four polarimetric channels is
referred to as “span.” If the transmit and receive antennas
coincide, the backscattering matrix may be symmetric,
with SHV = SVH-

In the Pauli decomposition, backscattering matrix 8 is
expressed as the complex sum of the Pauli matrices (Cloude
and Pottier, 1996):
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S = {SHH
SVH

SHV:| e i|:l 0j| )
Syv Va2 l0 1

s

1{0 —f] "
R e

where a, b, ¢, and d are all complex and given by:

s Spn + Syv e Sy — Syv - Suy + Svu . Suv — Syn
V2 V2 V2 V2

Because Syy = Sy, the Pauli matrix basis can be reduced
to the first three matrices. The polarimetric parameters
from the Pauli decomposition are associated for three
elementary scattering mechanisms: a stands for single- or
odd-bounce scattering, b represents double- or even-
bounce scattering, and ¢ denotes volume scattering.
Equation 3 shows that the span of S can be obtained

as follows:

(3)

Span = |Syy|? + 2|Suy|* + [Sw|* = |al? + |b]* + |c2. (4)

Thus, the Pauli decomposition of the backscattering matrix
is often employed to represent all the polarimetric informa-
tion in a SAR image. As shown in Plate 1a, a Pauli color-
coded image can be formed with intensities |af? (Blue), |b|?
(Red), |¢|* and (Green), which correspond to clear

physical scattering mechanisms.

H/A/Alpha Decomposition

The backscattering matrix elements can be arranged into a
vector: k = 0.707 [Sug + Svv, Suu — Svv, 2Suy] with the tree
elements referred to as the Pauli components of the signal.
The 3 X 3 coherency matrix T, is defined as the expected
value of kk'" (Lee and Poitter, 2009).
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T, Ty, Ty
I = TI*Z T,, Ty
TITE Tzka T

| St + Svv |2
[SHH T SVV][SHH + SVV]*
2Sny (Sun + Syy)*

(Sun + Swv) (Sgu — Syy)*
| SHH = va | i
ZSHV [SHH 3 va]*

2(Sun + Syy)Suv*

2(Sun — Sw)Suv* (5)
4| Syy| *

where * denotes the conjugate, and || denotes the module.
According to the H/A/Alpha decomposition theorem

(Cloude and Pottier, 1997), T, can be decomposed as
follows:

A i 1)
Ii= {Ul u, ﬂ} 0 A, O ['{1 u, Eﬁ_r (6)
IR o D

where A; A, A; are the eigenvalues of T, and © >\, >,
>A3 >0; u; for I = 1,2,3 are the eigenvectors of T,, and can
be formulated as follows:

u; = [cos ; sin a;cos B;€® sin «;cos B;e?]” (7)

where the symbol T stands for the complex conjugate.

The eigenvalues and eigenvectors are the primary
parameters of the H/A/Alpha decomposition. To simplify
the analysis of the physical information provided by this
decomposition, three different secondary polarimetric
parameters are defined from the eigenvalues and eigenvectors
(Cloude and Pottier, 1997):

* Mean alpha angle («a)
The estimate of mean polarimetric parameter «;, B, v;, 8; set
is given by:

(C_Y,B,'T’,S_) = E?:_1P;' L] (ai!JB}'!‘yp'Sj] P; = Af}rzizlhk [8]

where p; is called the probability of eigenvalue \;, and
represents the relative importance of this eigenvalue to the
total scattered power; & is the main parameter for identifying
the dominant scattering mechanism. The other parameters
B,7.,5 can be used to define the target polarization orienta-
tion angle. Consequently, an eigenvalue corresponds to the
associated scattered power to the corresponding eigenvector
and gives the importance of the corresponding eigenvector or
scattering mechanism.

* Polarimetric scattering entropy (H)

il = _2?-1 Pi li)gil Pi [g]

H is used to define the degree of statistical disorder of each
distinct scatter type within the ensemble. The low H (H—0)
indicates a scattering process corresponding to a pure target.
As the H increases, the final scattering mechanism from the
combination of the three pure targets given by u; can be
weighted by the corresponding eigenvalue. The high H
(F—1) stands for a scattering process corresponding to the
response of a distributed target.

* Polarimetric scattering anisotropy (A)

A=A, —25)/(A, +Ay) (10)

A is a parameter complementary to the entropy. It measures
the relative importance of the second and the third eigenval-
ues of the H/A/Alpha decomposition.

Some combinations between H and A were proposed to
improve the capability to distinguish different types of
scattering processes (Lee and Poitter, 2009):

* The (1- H)(1- A) image corresponds to the presence of a
single dominant scattering process.
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* The H(1- A) image characterizes a random scattering process.

* The HA image relates to the presence of two scattering
mechanisms with the same probability.

* The (1- H)A image corresponds to the presence of two
scattering mechanisms with a dominant process and a
second one with medium probability.

Some other polarimetric parameters have been proposed
based on the use of the H/A/Alpha decomposition.

* SERD and DERD

Single bounce eigenvalue relative difference (SERD) and
double bounce eigenvalue relative difference (DERD) are
sensitive to natural media characteristics and can be used for
quantitative inversion of bio- and geo-physical parameters
(Allain et al., 2004).

e Polarization asymmetry (PA) and polarization fraction (pr)

PA measures the relative strength of the two polarimetric
scattering mechanisms in the polarized portion of radar
return (Ainsworth et al., 2000). PF measures the unpolarized
portion of radar return (Ainsworth et al., 2002).

e Radar vegetation index (rRvi) and pedestal height (pH)

In a model of randomly oriented dielectric cylinders
developed by Van Zyl (1992), rRvi was used for analyzing the
scattering from vegetated areas. PH is another polarization
signature of measuring the randomness in the scattering
process (Durden et al., 1990).

* Target randomness parameter (Pg)

Py is very close to H and provides the similar information
(Luneburg, 2001).

* Shannon entropy (sE)

This parameter has been introduced by Refregier (2006) as a
sum of SE; and SE;. SE, is the intensity contribution that
depends on the total backscattered power, and SE;p is the
polarimetric contribution that depends on the Barakat degree
of polarization.

Polarimetric Parameter Extraction

The PolSARPro, ver. 4.03 software package was used to
implement the Pauli and H/A/Alpha decompositions to
extract polarimetric parameters (L6pez-Martinez et al., 2005).
The backscattering and coherency matrices were generated
from the RADARSAT-2 POLSAR data and filtered using the
refined Lee PoLSAR speckle filter (Lee et al., 1999b), which is
good at preserving polarimetric information and the correla-
tion between polarization channels. The determination of
the window size of the filter was a heuristic process. By
trying different window sizes, it was found thata 5 X 5
window size was appropriate for retaining subtle details
while reducing the speckle effect in homogeneous areas.

A total of 39 polarimetric parameters were extracted
using the H/A/Alpha decomposition. The polarimetric
parameters were combined with the backscattering matrix
elements (Syy, Syy, and Syy) and the coherency matrix
elements (T,,, Tyy, T3, Ta2, Ta3, and Tss) to form a POLSAR
multichannel image. The descriptors and the corresponding
image channels are listed in Table 1. The next step was to
delineate image objects and extract their features from the
multichannel image using object-oriented image analysis.

Object-oriented Image Analysis for PoISAR Images

One way to compensate for the limited information from
single frequency SAR data is to derive more features, such as
texture and shape of objects, for the classification of SAR
images in addition to the backscatter coefficients. Object-
oriented image analysis can be used on SAR images to
extract such type of information. The object-oriented
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TaBLe 1. DESCRIPTORS AND CORRESPONDING IMAGE CHANNELS OF THE POLSAR MULTICHANNEL IMAGE

Channel Descriptor Description
1-3 Shu Shv Syy Backscattering matrix elements
4-9 165 s Tin i Coherency matrix elements
Ty T3
10-13 A A Ay A; Eigenvalues of H/A/Alpha decomposition
14-16 P1 P2 Ps Probability of eigenvalues
17-20 oy o, Qy o Alpha angles and their mean value
21-24 By B; B B Beta angles and their mean value
25-28 3, 3, 34 ) Delta angles and their mean value
29-32 Vi Yz V3 Y Gamma angles and their mean value
33-38 H A (1-H)A H(1-A) Polarimetric scattering entropy, polarimetric scattering
anisotropy, and their combinations
HA (1-H)(1-A)
39 SERD Single bounce eigenvalue relative difference
40 DERD Double bounce eigenvalue relative difference
41 PA Polarization asymmetry
42 PF Polarization fraction
43 RVI Radar vegetation index
A4 PH Pedestal height
45 Py Target randomness parameter
46-48 SE SE, SEp Shannon entropy

package Definiens Developer 7.0 (previously called eCogni-
tion) was used to implement object-oriented image analysis
in this study. There are two steps in object-oriented image
analysis: (a) image segmentation, and (b) feature extraction.

Multi-resolution Segmentation of PoISAR Images
Multi-resolution segmentation (Uchiyama and Arbib, 1994;
Benz et al., 2004) was used to delineate image objects from
the RADARSAT-2 POLSAR image. The PoLSAR multichannel
image consists of as many as 48 channels; thus, the selection
of appropriate channels for multi-resolution segmentation is
necessary. Using all the channels in image segmentation is
improper given that some channels may degrade segmenta-
tion results because of the high noise in these channels. For
example, considerable noise exists in some polarimetric
parameters, such as scattering anisotropy and alpha angles.
Although these polarimetric parameters may represent
important information for identifying some LULC classes,
they are inappropriate for image segmentation because of
their poor ability to display the accurate boundaries of land
parcels and subtle details. Moreover, the increase in image
channels in segmentation process results in much more
computation time. Therefore, in this study, the image
segmentation was implemented on the Pauli color-coded
image to delineate objects. As previously mentioned, the
Pauli color-coded image has become the standard for PoLSAR
image display because it can represent all the polarimetric
information in a POLSAR image. Moreover, the Pauli color-
coded image represents clear physical scattering mecha-
nisms, which allow for clear contrast among different LULC
types. Given that the three channels of the Pauli color-coded
image correspond to the three elementary scattering mecha-
nisms with the same importance, equal weight was assigned
to the three channels in the image segmentation.
Multi-resolution segmentation is a bottom-up, region-
merging technique that begins with one-pixel objects. During
the region-merging process, smaller image objects are merged
into larger ones, and a heuristic optimization procedure is
used to minimize the weighted heterogeneity of the resultant
image objects. Heterogeneity is determined using the standard
deviation of color properties and their shapes as basis. The
merging of a pair of adjacent image objects increases hetero-
geneity. The process will stop if the growth exceeds the
threshold defined by a so-called scale parameter. Adjusting
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the scale parameter indirectly influences the average object
size, i.e., a higher value leads to larger objects and vice versa.
Setting the scale parameter was a heuristic process. Multi-
resolution segmentation with different scale parameters was
carried out to determine the optimal scale parameter. The
corresponding segmentation results related to the different
scale parameters are shown in Plate 2. The experiment shows
that the segmentation with a scale parameter of 10 was good
enough for delineating accurate land parcels and retaining
subtle details. Image objects became too fragmental at a scale
parameter smaller than 10.

Feature Extraction from the PolSAR Multichannel Image
Object-oriented image analysis provides useful additional
information for separating different LULC classes. Because the
multichannel image consists of as many as 48 channels, the
number of features that can be extracted from one image
object is as high as 1,161. These features are the indigenous
parameters of Definiens Developer 7.0, and they are listed as
four major categories (Baatz et al., 2004):

1. 192 (4 X 48) indicators related to the statistical values of each
object: min, max, mean, and standard deviation of each layer;

2. 576 (12 X 48) indicators related to texture (e.g., grey-level
co-occurrence matrix (GLCM) homogeneity, GLCM contrast,
GLCM dissimilarity, and GLCM entropy);

3. 336 (7 X 48) indicators related to spatial relationship
(e.g., mean difference to neighbors and mean difference to
brighter neighbors);

4. 57 indicators related to shape (e.g., area, length, number of
segments, and main line curvature/length extracted from
an image object).

Classification Using Decision Tree Algorithms

The main task of this step is to determine the class of each
image object based on their features. As a large set of features
were extracted from image objects through object-oriented
image analysis, the determination of the features used in
classification is very important. Decision trees are used to
predict the membership of cases or objects in the classes of a
categorical dependent variable based on their measurements
on one or more predictor variables. Decision trees are not
just feature selection methods like principal component
analysis (pcA). They are generally used with full dimension-
ality of data to achieve a final classification. By examining
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Plate 2. Determination of the optimal scale parameter for the segmentation of the Pauli
color-coded image of RADARSAT-2 PoLSAR image: (a) No Segmentation, (b) Scale = 20, (c)
Scale = 10, and (d) Scale = 5.

the effects of every input feature to determine every split in

: /i ) * Layer mean values of Ty,, T, T3, oy, and PH
the final tree, decision trees can select the most important

features that achieve the best classification result. The mean value of an image object that consists of n pixels
Classification accuracies from decision tree classifiers in channel ¢ is calculated from the value of the pixels (c)).

are often greater as compared with those obtained using the »

maximum likelihood or linear discriminant function classi- o= 1 e (11)

fiers (Laliberte et al., 2006). Decision tree algorithms have st

many advantages: (a) They are white box models that are

. . : ; ; e Standard deviation of T,, and SE
simple to understand and interpret. If a given result is

provided by the model, the result is easily interpreted by The standard deviation of an image object that consists of
simple mathematics; (b) By performing univariate splits and n'pixels in channel c is calculated from the value of the
examining the effects of predictors one at a time, decision pixels (c))
trees are able to handle a variety of types of predictors, such e ;
as numerical or categorical predictors, and require little data & Ia_( Vel 1% S )
preparation; and (c) They age robust and perform well with o N ;_21( n E(’;C} 55
large data set in a short period of time. 2 i3

In this study, QUEST (Loh and Shih, 1997; Lim et al., * GLCM Ang. 2°¢ moment of T\, and PH

2000; Wu et al., 2009) was used as a decision tree tool to GLCM is a tabulation of how often different combinations of
implement classification. QUEST is a binary-split decision tree pixel gray levels occur in an image. GLCM Ang. 2°¢ moment
algorithm for classification and data mining. Training objects measures the local homogeneity. The value is high if some
were manually drawn on the Pauli color-coded image based elements are large and the remaining ones are small.

on the field plots in the training group. After the implementa-

. 0 ' Lot v N=1

tion of the image segmentation, the training ob]e'cts were GLCM Ang.2" moment = >, P?, (13)
further segmented into a large number of sub-objects. More ij=o

than 1,000 training objects were acquired for the construction i o _

of the decision trees. On the basis of the training objects, a ;Nhem . mlth(f A5 nu]rlnber, L33 t\}; Pi (:olun‘ml numbell; i tt]11e
decizien ine Snaiconstructed using QUEST for the LULC exture calculation cell matrix, N denotes the number o

rows or columns of the cell matrix, and P;; is the normalized

classification. To remove the sections of the decision tree that value in cells i and j, and is defined as:

may have arisen from noisy or erroneous data, the decision

tree was pruned with 10-fold cross-validation and the 1-SE Vi
rule; these are common methods for pruning decision trees Ry (14)
and are embedded in QUEST. The final decision tree con- Z Vi;

structed using QUEST is shown in Figure 3, and the selected Lizg

features in the final tree are listed as follows: where V;; is the value in cells 7 and j of the image window.
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Figure 3. Decision tree constructed with QUEST for LULC classification using RADARSAT-2 POLSAR data.

Figure 3 shows that no spatial or geometric feature was
selected in the final tree. The main reason is that the image
objects delineated from the image segmentation were too
fragmental to represent unbroken land parcels. As a land
parcel in SAR images is not as homogeneous as that in
optical images because of speckle in POLSAR images, the
small scale parameter had to be used in the multi-resolution
segmentation to delineate the accurate boundaries of land
parcels and retain subtle details. However, the small scale
parameter also led to an over segmentation of the image,
resulting in a large number of fragmental image objects.

As shown in Plate 2, some land parcels were segmented
into many fragmental parts (image objects). An image
object usually represents part of a land parcel; thus,

using the spatial or geometric information on land parcels
was difficult.

Results of Classification and Validation

A comparison between the proposed method and the
Wishart supervised classification which is based on the
coherency matrix (Lee et al., 1994; Pottier et al., 2005) was
made to test the performance of the proposed method
(Plate 3). The Wishart supervised classification is commonly
used for the classification of PoLSAR data. This method is a
pixel-based maximum likelihood classifier based on the
complex Wishart distribution for the coherency matrix. The
Wishart supervised classification was implemented using the
PolSARPro, ver. 4.03 software (Lépez-Martinez et al., 2005).
A total of 37,615 pixels of ground data were collected for
the validation of the classification results. Based on the
confusion matrix determined using the validation set, four
statistics are calculated for the validation: overall accuracy,
estimate of kappa (Kappa), producer’s accuracy, and user’s
accuracy (Story and Congalton, 1986; Congalton and Green,
2009). The accuracy statistics of these two methods is
provided in Tables 2 and 3. The overall accuracy of the
proposed method was 92.17 percent, whereas that of

the Wishart supervised classification was 74.72 percent.
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The kappa value of the proposed method was 0.90, much
higher than that of the Wishart supervised classification,
which exhibited a kappa value of 0.66. Furthermore, the
proposed method achieved higher producer’s and user’s
accuracies for almost all the classes than did the Wishart
supervised classification, especially for built-up area and
vegetation. The results show that a great improvement was
achieved using the proposed method compared with the
Wishart supervised classification. However, the comparison
only shows the improvement achieved by using the
H/A/Alpha decomposition, object-oriented image analysis,
and decision tree algorithms. Additional comparisons were
made to investigate the detailed contribution of these three
methods to the improvement.

Classification using object-oriented image analysis and
decision tree algorithms but without the H/A/Alpha decom-
position was implemented based on the backscattering
matrix and the coherency matrix. The classification result
and the accuracy evaluation are shown in Plate 3¢ and
Table 4. The comparison between the method without the
H/A/Alpha decomposition and the proposed method shows
the contribution of the H/A/Alpha decomposition to the
final accuracy of the proposed method. The overall accuracy
and the kappa value increased by 5.43 percent and 0.08
when the H/A/Alpha decomposition was used in the
proposed method. Furthermore, the user’s accuracy for
vegetation and the producer’s accuracy for built-up area
significantly improved when the H/A/Alpha decomposition
was employed. As shown in Figure 3, «, and PH are impor-
tant in distinguishing between vegetation and built-up areas;
ay is related to the underlying average physical scattering
mechanism of the observed targets, and PH is related to the
randomness in the scattering. Buildings have the typical
characteristics of double-bounce scattering, and forest and
dense vegetation have the typical characteristics of volume
scattering. Therefore, o, and PH are important in distinguish-
ing between these two classes.

This proposed method was used for the classification by
only using polarimetric decomposition and decision tree

PHOTOGRAMMETRIC ENGINEERING & REMOTE SENSING
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Plate 3. LuLc classification results: (a) Proposed method, (b) Wishart supervised
classification based on the coherency matrix, (c) Proposed method without the
H/A/Alpha decomposition, (d) Proposed method without object-oriented image analysis,
(e) Proposed method without incorporating textural and spatial information,

and (f) Proposed method using the nearest neighbor classifier instead of decision

tree algorithms.

TABLE 2. CLASSIFICATION ACCURACY OF THE PROPOSED METHOD

Reference data

Classified data Barren Land Built-up Area Vegetation Water Total User’s Accuracy (%)
Barren Land 8.014 49 258 1,295 9,616 83.34
Built-up Area 236 8,309 422 170 9,137 90.94
Vegetation 25 398 9,061 0 9,484 95.54

Water 51 19 22 9,286 9,378 99.02

Total 8,326 8,775 9,763 10,751 37,615

Producer’s accuracy (%) 96.25 94.69 92.81 86.37

Overall accuracy (%) 92.17

Kappa 0.90
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TABLE 3. CLASSIFICATION ACCURACY OF THE WISHART SUPERVISED CLASSIFIGATION

Reference data

Classified data Barren Land Built-up Area Vegetation Water Total User’s Accuracy (%)
Barren Land 7,250 741 562 1.063 9,616 75.40
Built-up Area 269 7,920 783 165 0137 86.68
Vegetation 1,070 3 TT7 4,637 0 9,484 48.89

Water 568 204 308 8,298 9,378 88.48

Total 9. 167 12,642 6,290 9,526 37,615

Producer’s accuracy (%) 79.17 62.65 73.72 87.11

Overall accuracy (%) 74.72

Kappa 0.66

TABLE 4. CLASSIFICATION ACCURACY OF THE PROPOSED METHOD WITHOUT THE H/A/ALPHA DECOMPOSITION

Reference data

Classified data Barren Land Built-up Area Vegetation Water Total User’s Accuracy (%)
Barren Land 8,240 71 144 1,161 9,616 85.69
Built-up Area 236 8,321 410 170 9,137 91.07
Vegetation 559 2,150 6,775 0 9,484 71.44
Water 61 19 3 9,293 9,378 99.09

Total 9,096 10,561 7,334 10,624 37,615

Producer’s accuracy (%) 90.59 78.79 92.38 87.47

Overall accuracy (%) 86.74

Kappa 0.82

TABLE 5.

CLASSIFICATION ACCURACY OF THE PROPOSED METHOD WITHOUT OBJECT-ORIENTED IMAGE ANALYSIS

Reference data

Classified data Barren Land Built-up Area Vegetation Water Total User’s Accuracy (%)
Barren Land 8,490 9 195 922 9,616 88.29
Built-up Area 206 8.160 595 176 9,137 89.31
Vegetation 512 1,500 7,472 0 9,484 78.79
Water 1,019 3 65 8,291 9,378 88.41

Total 10,227 9,672 8,327 9,389 37,615

Producer’s accuracy (%) 83.02 84.37 89.73 88.31

Overall accuracy (%) 86.17

Kappa 0.82

algorithms but without object-oriented image analysis. The
classification was implemented on a pixels basis, and only the
value of pixels was utilized in the classification. The classifi-
cation result and the accuracy evaluation are shown in Plate
3d and Table 5. The comparison between the method without
object-oriented image analysis and the proposed method
shows the contribution of object-oriented image analysis to the
final accuracy of the proposed method. The overall accuracy
and the kappa value increased by 6.00 percent and 0.08 when
object-oriented image analysis was used in the proposed
method. Besides of the increase in the overall accuracy and
kappa value, the user’s and producer’s accuracies for almost
all the classes increased when object-oriented image analysis
was used. Moreover, the proposed method more effectively
represented reality than did the pixel-based classification.
Lower spatial heterogeneity is observed in Plate 3a than in
Plate 3d because the proposed method was less affected by
speckle in the POLSAR image compared with the pixel-based
method. This minimal effect was achieved through the
implementation of the classification based on image objects.
Classification using the proposed method without
incorporating any textural or spatial features was conducted.
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The classification result and the accuracy evaluation are
shown in Plate 3e and Table 6. The comparison between
this classification and the classification using the proposed
method shows the contribution of textural information to the
final accuracy of the proposed method. The overall accuracy
and the kappa value of the proposed method increased by
2.07 percent and 0.03 compared with the method without
using textural and spatial information. Furthermore, the
proposed method achieved higher user’s accuracy for water
and producer’s accuracy for barren land. Figure 3 shows that
the standard deviation of T,; and the GLCM Ang. 2°¢ moment
of pH are helpful in distinguishing between water and barren
land.

Classification using the proposed method integrating
the nearest neighbor classifier instead of decision tree
algorithms was carried out to investigate the contribution
of decision tree algorithms to the final accuracy of the
proposed method. The nearest neighbor classifier is com-
monly used for object-oriented classification. In this study,
the nearest neighbor classification was implemented using
Definiens Developer 7.0 (Baatz et al., 2004). The Feature
Space Optimization function provided by Definiens

PHOTOGRAMMETRIC ENGINEERING & REMOTE SENSING



TABLE 6. CLASSIFICATION ACCURACY OF THE PROPOSED METHOD WITHOUT INCORPORATING TEXTURAL AND SPATIAL INFORMATION

Reference data

Classified data Barren Land Built-up Area Vegetation Water Total User’s Accuracy (%)
Barren Land 8,156 0 309 1,151 9,616 84.82
Bui]t—up Area 236 8,297 434 170 9,137 90.81
Vegetation 25 393 9,066 0 9,484 95:59
Water 964 24 1 8,373 9,378 89.28

Total 9,381 8,714 9,826 9,694 37,615

Producer’s accuracy (%) 86.94 95.21 92.27 86.37

Overall accuracy (%) 90.10

Kappa 0.87

TABLE 7. CLASSIFICATION ACCURACY OF THE PROPOSED METHOD USING THE NEAREST NEIGHBOR CLASSIFIER INSTEAD OF DECISION TREE ALGORITHMS

Reference data

Classified data

Barren Land Built-up Area Vegetation Water Total User’s Accuracy (%)
Barren Land 8,439 0 456 721 9,616 87.76
Built-up Area 235 8,044 686 172 9,137 88.04
Vegetation 542 252 8,690 0 9,484 91.63
Water 1,108 24 22 8,224 9,378 87.69
Total 10,324 8,320 9,854 9117 37,615
Producer’s accuracy (%) 81.74 96.68 88.19 90.21
Overall accuracy (%) 88.79
Kappa 0.85

Developer 7.0 was used to select the features used in the
“nearest neighbor classification (Baatz et al., 2004). The
Feature Space Optimization compares the samples for
selected classes with respect to features, and determines
the combination of features that produces the largest
average minimum distance between the samples of different
classes. The classification result and the accuracy evalua-
tion are shown in Plate 3f and Table 7. The overall accu-
racy and the kappa value of the proposed method increased
by 3.38 percent and 0.05 compared with the method using
the nearest neighbor classifier. Moreover, the experiment
indicates that QUEST is more efficient than the Feature
Space Optimization in feature selection. Although a sub-
stantial improvement was achieved using the proposed
method for LULC classification, there was still some confu-
sion between different LULC classes in the classification.
Some buildings with specific orientations that are not
aligned in the azimuth direction or having complex struc-
tures such as rough roofs that backscatter polarized waves
randomly were often confused with those from vegetation.
Some buildings with wide flat roof tended to be confused
with barren land because of the similar single-bounce
scattering mechanism taking place on the flat roof and

the barren land. The shadow of buildings was prone to be
confused with barren land because of little radar return
from both of them. The shadow of buildings was not
illuminated by the sensor, and the barren land reflected
most of the incident radar wave to the opposite direction.
There was also confusion between the shadow of mountains
and barren land for the same reason. Some barren land with
water on their surface or high soil moisture was always
confused with water.

Conclusions

LULC classification is an important research topic in the
methodology and applications of remote sensing. This paper
has proposed a new method that integrates polarimetric

PHOTOGRAMMETRIC ENGINEERING & REMOTE SENSING

decomposition, object-oriented image analysis, and decision
tree algorithms for LULC classification using RADARSAT-2
POLSAR data. The proposed method can achieve much higher
overall accuracy and kappa value than the Wishart super-
vised classification which is based on the coherency matrix
for the classification of PoLSAR data. The overall accuracy of
the proposed method was 92.17 percent, whereas that of the
Wishart supervised classification was 74.72 percent. The
kappa value of the proposed method was 0.90. It is much
higher than that of the Wishart supervised classification,
which had a kappa value of 0.66. Furthermore, the user’s
and producer’s accuracies for almost all the LULC classes can
be improved using the proposed method compared with the
Wishart supervised classification. The results indicate that
the proposed method exhibits much better performance than
the Wishart supervised classification for LULC classification
using POLSAR data.

Polarimetric decomposition, object-oriented image
analysis, and decision tree algorithms all contribute to the
improvement achieved by the proposed method. The overall
accuracy and the kappa value of the proposed method will
decrease by 5.43 percent and 0.08 if it is without the
H/A/Alpha decomposition. The polarimetric parameters
extracted using polarimetric decomposition techniques are
related to the scattering properties of the observed objects;
thus, they have significant implications for the classification
of PoLSAR data. The performance of the classification of
POLSAR data can be improved by incorporating these polari-
metric parameters into the classification. This study has
shown that some polarimetric parameters, such as o, and PH,
are important in distinguishing between vegetation and built-
up area. The overall accuracy and the kappa value of the
proposed method will decrease by 6.00 percent and 0.08 if it
is without object-oriented image analysis. Object-oriented
image analysis is helpful in improving the accuracy of the
classification of PoLSAR images by reducing the speckle effect
and extracting textural and spatial information to support the
classification. Some textural features, such as the standard
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deviation of T}; and the GLCM Ang. 2" moment of PH, are
helpful in distinguishing between water and barren land.
Moreover, the object-oriented classification of PoLSAR data can
exhibit better performance in terms of representing reality
than does pixel-based classification, because it is less affected
by speckle. The overall accuracy and the kappa value of the
proposed method will decrease by 3.38 percent and 0.05 if it
is based on the nearest neighbor classifier instead of decision
tree algorithms. With the addition of polarimetric, textural,
and spatial information, hundreds of features can be poten-
tially incorporated into the object-oriented classification of
POLSAR data. Decision tree algorithms can be used to select
the most important features that achieve the best classifica-
tion result. In this study, QUEST proved to be efficient in
selecting features and implementing classification. Higher
classification accuracy can be achieved using QUEST than
when the nearest neighbor classifier is used.

LULC classification using only one RADARSAT-2 POLSAR
image does not provide sufficient information for the accurate
separation of different types of vegetation. The main problem
is that polarimetric information is saturated with the increase
in height and density of vegetation layer. One promising way
to overcome this problem is to incorporate interferometric
information into the classification. The magnitude of interfer-
ometric coherency, which is less affected by any amplitude
saturation effects, allows high biomass forest classification
even at higher frequencies (Lee and Poitter, 2009). Further
studies will be conducted to incorporate interferometric
information into the classification of PoLSAR data to achieve
more observation space and higher accuracy.
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