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A B S T R A C T

Timely and accurate delineation of global urban land is fundamental to the understanding of global environ-
mental changes. However, most of the contemporary global urban land maps have coarse resolutions and are
available for one or two years only. In this study, we developed the multi-temporal global urban land maps based
on Landsat images for the 1990–2010 period with a five-year interval (‘Urban land’ in these maps refers to
‘impervious surface’, i.e., artificial cover and structures such as pavement, concrete, brick, stone and other man-
made impenetrable cover types). We proposed the method of Normalized Urban Areas Composite Index (NUACI)
and utilized the Google Earth Engine to facilitate the global urban land classifications from an extensive number
of Landsat images. The global level's overall accuracy, producer's accuracy and user's accuracy for our mapping
results are 0.81–0.84, 0.50–0.60 and 0.49–0.61, respectively. The Kappa values are 0.43–0.50 at the global level,
and ~0.33 (in China) and ~0.42 (in the U.S.) at the country level. By analyzing the presented dataset, we found
that the world's urban land area had increased from 450.97 ± 1.18 thousand km2 in 1990 to
747.05 ± 1.50 thousand km2 in 2010, reaching a global coverage of 0.63%. China, the United States and India
together (14% of the world's terrestrial area in total) contributed almost 43% of the total increase of global urban
land area. A free download link for these data is attached at the end of this paper.

1. Introduction

Urban land has far-reaching impacts on societies and environments
located beyond the city boundaries. Accurate and timely information
about global urban land is essential for the research of land cover
change, hydrologic dynamics, carbon cycles and climate change
(Schneider et al., 2010). A variety of urban land definitions exist in
literature, resulting in the varying estimates of the world's urban land
from 0.45–0.65% to 2–3% (Liu et al., 2014). To avoid confusion, the
term ‘urban land’ in this paper refers to ‘impervious surface’, i.e., arti-
ficial cover and structures such as pavement, concrete, brick, stone and
other man-made impenetrable cover types (Chen et al., 2015).

In response to the growing demand for global urban land data, since
2000, several maps have been developed using remote sensing techni-
ques (Potere et al., 2009; Schneider et al., 2010). The data sources of
these maps include Moderate Resolution Imaging Spectroradiometer
(MODIS), Defense Meteorological Satellite Program-Operational Line-
scan System (DMSP-OLS) and Landsat. Most of these maps have the

coarse spatial resolutions of 500–1000m (Bartholomé and Belward,
2005; Elvidge et al., 2007; Schneider et al., 2010). Additionally, they
are only available for a single year or two. Therefore, it is difficult to
attain a clear picture of global urban land expansion over a long his-
torical period.

As finer-resolution images, such as the Landsat series, are becoming
increasingly available, it is feasible to refine the global mapping of
urban land by using these image sources. There are extensive regional
applications of Landsat images for urban expansion mapping.
Representative examples include Bagan and Yamagata (2012) for
Toyko, Li et al. (2015) for Beijing, Zhang and Weng (2016) for the Pearl
River Delta, Sexton et al. (2013) and Song et al. (2016) for the Wa-
shington, D.C.–Baltimore metropolitan region, etc. In particular, Sexton
et al. (2013) and Song et al. (2016) adopt an advanced ‘continuous’
characterization of urban land, which can better represent the fuzzy
boundaries between urban land and the surrounding environments.

In this study, we present a new multi-temporal global urban land
data product developed by using the Landsat images during the
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1990–2010 period, at five-year intervals. At present, there are two
Landsat-based global land cover products, i.e., FROM-GLC by Gong
et al. (2013) and GlobeLand30 by Chen et al. (2015), respectively. They
provide the most up-to-date information of comprehensive global land
cover types, although they are only available for the years of 2000 and
2010. The production of our data product aims to mitigate the shortage
of high-resolution multi-temporal global urban land maps and provide
reliable information for global urban research.

The production of the multi-temporal global urban land maps from
Landsat images raises three critical challenges. The first one is the
image selection scheme, which should ensure the optimal global cov-
erage of images with minimal cloud cover. However, varying weather
conditions from one region to another decrease the availability of ac-
ceptable images, especially for tropical and sub-tropical regions. The
second challenge relates to the establishment of an efficient platform
for image data processing. The third challenge is the development of
adequate image classification methods with satisfactory performance. A
wide range of methods have already been proposed for the automated
prediction of urban land from Landsat images (Bagan and Yamagata,
2012; Li et al., 2015; Zhang and Weng, 2016). However, most of them
are regional applications, whereas their applicability for global uses is
usually less understood.

To confront the first and second challenges noted above, we utilized
the Google Earth Engine (GEE, https://earthengine.google.org) to ex-
ploit its computational power as well as to facilitate the image selection
process. To address the third challenge, we adopted an index-based
method for the automated prediction of urban land. Previous research
has revealed that index-based methods are effective and efficient for
applications with different image sources, such as Landsat (Patel et al.,
2015) and DMSP-OLS (Liu et al., 2015; Yu et al., 2014). These methods
can also be easily adapted to applications in different geographical
regions. In this study, we used the Normalized Urban Areas Composite
Index (NUACI), which was proposed recently by Liu et al. (2015).
NUACI articulates several important normalized indices to discriminate
urban land from other non-urban land cover types. This new index has
been applied to urban land mapping in China during the 2000–2010
period (available via http://www.geosimulation.cn/ISA-China.htm).

The NUACI-based global urban land classification is carried out in
several steps. First, the world's terrestrial area is stratified based on the
urban ecoregion scheme proposed by Schneider et al. (2010). This
stratification approach regards local similarities with respect to the
ecological, cultural and social elements of cities at the global scale.
Second, urban land sample is collected to conduct the region-specific
calibration for NUACI. Third, urban land is classified by segmenting the
NUACI images with the region-specific thresholds. Finally, classifica-
tion accuracy is evaluated by comparing the results against a global
reference dataset and other mainstream global urban land products.

2. Methods

2.1. Normalized Urban Areas Composite Index (NUACI)

The development of NUACI integrates the Normalized Difference
Water Index (NDWI) (McFeeters, 1996), the Normalized Difference
Vegetation Index (NDVI) (Chen and Cihlar, 1996) and the Normalized
Difference Built-up Index (NDBI) (Zha et al., 2003). The calculations of
these indices are specified below:

= − +Green NIR Green NIRNDWI ( )/( )band band band band2 4 2 4 (1)

= − +NIR RED NIR REDNDVI ( )/( )band band band band4 3 4 3 (2)

= − −SWIR NIR SWIR NIRNDBI ( )/( )band band band band5 4 5 4 (3)

Fig. 1 shows the representative urban land pixels along with five
other types of non-urban pixels collected from a sub-tropical city,
Guangzhou, and two desert cities, Phoenix and Riyadh (2000 pixels per

type per city). It is evident that the urban land pixels form a group
clustering around the regions with large NDBI values and small NDWI
and NDVI values. For the desert cities, the urban land pixels are also
clearly separated from the barren land pixels in the projected planes of
NDVI-NDBI and NDWI-NDBI. Therefore, the indices of NDBI, NDWI and
NDVI can be integrated to assist the urban land classification:

= × − − + − + −U NDWI a NDVI b NDBI cNUACI (1 ( ) ( ) ( ) )NTL i NDWI i NDVI i NDBI
2 2 2

(4)

where UNTL represents the binary mask obtained from DMSP-OLS
nighttime lights; UNTL=0 if pixels are classified as non-urban ac-
cording to the DMSP-OLS nighttime lights threshold, and UNTL=1
otherwise; NDWIi, NDVIi and NDBIi are the corresponding values of
NDWI, NDVI and NDBI in pixel i; and aNDWI, bNDVI and cNDBI are the
corresponding mean values of NDWI, NDVI and NDBI in the urban land
sample.

The binary mask (UNTL) is obtained using the DMSP-OLS nighttime
lights data that are concurrent with the Landsat images. The threshold
method is used to segment the DMSP-OLS nighttime lights images into
‘urban’ and ‘non-urban,’ resulting in rough estimates of the spatial ex-
tent of built-up areas. This method is similar to that used by Shi et al.
(2014a,b), which regards the DMSP-OLS pixels with values > 0 as
potential urban pixels. After the segmentation, ‘non-urban’ pixels can
be excluded with certainty, whereas potential ‘urban’ pixels were re-
tained for subsequent classification.

The NUACI-based classification method requires calibration for the
representative centroids (the triplet (aNDWI, bNDVI, cNDBI) in Eq. (4)) and
the thresholds for NUACI segmentation. The centroids and thresholds
may vary across different regions throughout the world due to het-
erogeneous physical and socioeconomic characteristics. Therefore, we
divided the world map into different regions and calibrated the cen-
troids and thresholds separately for each region. We applied the global
stratification scheme of urban ecoregions developed by Schneider et al.
(2010) (Fig. 2(a)). This stratification scheme takes three elements into
account including a biome designation characterizing general climate
and vegetation, urban topology differences and the economic level
defined by per capita gross domestic product (GDP). It should be noted
that the 16th urban ecoregion is covered by permanent ice and snow,
and thus it was excluded in the subsequent analysis.

Within each urban ecoregion, multiple individual cities are selected
according to their population size and economic status. The urban ex-
tent within each individual city is defined by buffering the city core
with an average distance of 20–25 km, depending on the actual physical
size of the city. For each urban ecoregion, the selected cities are ran-
domly assigned into three different groups of the same size (Fig. 2(a)):

(1) ‘Centroid sites’: For these sites, we collected urban land sample and
estimated the mean NDWI, NDVI and NDBI values, which were
further used to estimate the centroids.

(2) ‘Threshold sites’: We generated the NUACI images using the esti-
mated centroids. Then, we calibrated the threshold values with the
reference data for these sites. The reference data were obtained by
the object-based classification of Landsat images for these sites and
a subsequent double-checking correction procedure with the con-
current Google Earth images. We calibrated the thresholds by ex-
perimenting with different thresholds until the one with the smal-
lest error was found. The errors were assessed using the indicators
of quantity disagreement and allocation disagreement (Pontius and
Millones, 2011):
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where J is the number of land types, whereby J=2 is applied in our
analysis (i.e., ‘urban’ and ‘non-urban’); nij is the number of pixels
classified as type i and referenced as type j; Ni is the total number of
pixels in type i; qg and ag are the quantity disagreement and the allo-
cation disagreement for type g, respectively; Q and A are the overall
quantity disagreement and the overall allocation disagreement; the
overall error D can be obtained by the sum of Q and A.

(3) ‘Testing sites’: We generated the NUACI images for these sites using
the calibrated centroids, and then applied the calibrated thresholds
for the urban land classification. Finally, we validated the classifi-
cation against the reference data (they are obtained similarly to
those mentioned in ‘Threshold sites’) using the indicators of quan-
tity disagreement and allocation disagreement (Eqs. (5)–(8)).

2.2. Google Earth Engine Platform

Google Earth Engine is a cloud-based platform for scientific analysis
and visualization of petabyte-scale geospatial datasets. It stores several
decades of historical images and scientific datasets. We used the
Landsat 5 TM calibrated top-of-atmosphere reflectance data as the
primary image source, with the constraint cloud score of< 20.

To utilize more cloud-free images, we extended the image selection
dates to a period from two years before the target year to two years
after. An example can be found via: https://code.earthengine.google.
com/980b294eac1c83d08fee10698de24286 (A Google account is re-
quired). It shows that our selection strategy can effectively address the
cloud-free image shortage in tropical areas such as India and Indonesia.
However, a large part of Russia has no Landsat image coverage in 1990s
due to the issues of ground receiving stations, and hence there are
missing data in this area for our mapping results in 1990. After the
Landsat image selection procedure, the yearly average values of NDWI,
NDVI and NDBI were estimated for each region. The results were used
to estimate the region-specific centroids with the collected sample.
Based on the estimated region-specific centroids and the nighttime
lights data masks, the NUACI images can then be generated. Later,
urban land pixels in each region were obtained using the region-specific
NUACI segmentation thresholds.

Fig. 1. Distributions of representative pixels for different land cover types in the feature space composed of NDWI, NDVI and NDBI. These pixels were collected from the Landsat images of
122/044, 037/037 and 165/043, respectively.
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2.3. Quality evaluation and area estimation

To rigorously assess the accuracy of our global urban land classifi-
cations, we prepared a multi-temporal reference dataset based on a
stratified random sampling design (Olofsson et al., 2012; Pengra et al.,
2015; Stehman et al., 2012). Specifically, we first partitioned the
world's terrestrial areas using 6× 6 km blocks. In the next step, we used
the LandScan 2010 data and adopted the criterion of> 1000 persons/

km2 (=36,000 per block) to extract the ‘urban’ blocks (~15,000 ‘urban’
blocks globally) (Olofsson et al., 2012). Then, we set the total sample
size as 150 blocks according to cost and precision considerations. The
150 sample blocks first were proportionally allocated in each stratum.
Subsequent manual adjustments were then applied to slightly increase
the sample size for strata with too few blocks (e.g., #10). Finally, the
sample blocks were randomly picked according to the adjusted sample
sizes. The same allocation procedure was also applied to the sampling

Fig. 2. The locations of (a) calibration and testing sites and (b) 6× 6 km reference data blocks in each urban ecoregion.
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of ‘non-urban’ blocks with the same size of the ‘urban’ blocks (150)
(Table 1 and Fig. 2(b)).

In each sample block, we performed manual interpretation to label
the urban land distributions. For each block, we first implemented
object-based image segmentation on the corresponding Landsat image,
and overlaid the resulting image objects (polygons) with the concurrent
Google Earth images so that the true land cover types (‘urban’ or ‘non-
urban’) in the objects could be interpreted. An example is shown in
Fig. 3. The polygons with red outlines are resulting image objects using
the Landsat image. The yellow polygons are examples of the labeled
‘urban’ objects according to manual interpretation with Google Earth
images. All the labeled objects are checked by independent working
groups that do not participate in the image manual interpretation, and
corrections are also made to the object labels if needed.

In the image selection procedure, we chose the Google Earth images
with dates as close as possible to those of the Landsat images. The
image selection follows the priorities of similar dates, the same season,
the same year and adjacent years. For example, given a sample block
with the date of June 4th, 1990, if there are no available Google Earth
images with similar dates, the period of May to July or in the whole
year of 1990, then other images (if available) in the adjacent years of
1991, 1992 or 1993 are considered. However, there are regions where
historical Google Earth images are not available. In these cases, the
sample blocks are labeled ‘missing reference images.’ If a sample block
is labeled ‘missing reference images’ for more than two target years,
then this block is excluded from the reference dataset and a new block

is randomly selected following the same sampling procedures discussed
above.

By using this reference dataset, we performed a per-pixel accuracy
assessment to validate our urban land classifications using the metrics
of overall accuracy (OA), producer's accuracy (PA), user's accuracy
(UA) and Cohen's Kappa. We also estimated the standard deviations and
the confidence intervals at 95% significance level for these metrics
(Congalton and Green, 2008). Moreover, this reference dataset is also
used as a basis for making a comparative analysis between our mapping
results and other contemporary global urban land products, including
GlobeLand30, MODIS500m, GLC2000, GRUMP and IMPSA.

Because the global urban land classifications contain errors, urban
land area estimates calculated using the simple pixel counting method
are inadequate. Therefore, we followed the ‘good practices’ suggested
by Olofsson et al. (2014) and estimated the urban land areas using the
error matrices obtained from the reference data blocks. The area esti-
mation is based on ∙purban, the proportion of urban land area estimated
from the reference data, and its estimated standard error ∙S p( )urban .
Denoting the mapped urban land area as Aurban, the estimated urban
land area with 95% confidence intervals is then estimated as:
 ± ×A S A1.96 ( )urban , where  = × ∙A A purban urban urban and

 = × ∙S A A S p( ) ( )urban urban .

3. Results and discussion

3.1. NUACI images

We collected 15,000 urban pixels (1000 pixels per urban ecoregion)
to estimate the region-specific centroids for generating the NUACI
images. Fig. 4 shows the histograms of NDWI, NDVI and NDBI for these
pixels. All distributions except some cases (NDBI in #7, #14 and #15)
are roughly approximated to a thin Gaussian shape, implying that these
pixels are tightly clustered in the feature space. The distribution shapes
of the NDBI in #7, # 14 and #15 are analogous to a weighted-sum of
two Gaussian distributions, indicating that these urban pixels are
grouped into two clusters along the NDBI component. Therefore, these
pixels can be separated from other land cover types using proper seg-
mentation thresholds.

Fig. 4 also suggests that most of the NDWI and NDBI mean values
are negative, while most of the NDVI mean values are positive. More-
over, these values are close to 0, indicating that urban pixels in different
urban ecoregions are clustered at roughly the same location in the

Table 1
The number of sample blocks in each urban eco-region (each table entry represents equal
numbers of urban and non-urban blocks).

U.E. Proportional
allocation

Manual
adjustment

U.E. Proportional
allocation

Manual
adjustment

1 20 18 9 9 9
2 25 27 10 2 4
3 16 14 11 5 5
4 11 9 12 11 9
5 9 8 13 9 10
6 8 8 14 5 6
7 5 7 15 4 5
8 11 11

U.E.= urban ecoregion.

Fig. 3. An example of the production of reference data based on image segmentation and manual interpretation.
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feature space. The standard deviations of these three indices are con-
sistently small across different urban ecoregions, particularly in regions
#1, #6, #11 and #13. Therefore, the urban pixels in these four regions
are the most homogeneous, and we can expect a steep trough in the
segmentation threshold selection for these four regions (as confirmed
by Fig. 6).

A subset of the generated multi-temporal NUACI images for some
representative cities are shown in Fig. 5. These results successfully re-
flect the artificial elements and constructions (e.g., residential blocks
and road networks) even in the areas with mixed land cover types. One
can easily inspect the urban land expansion in these cities, such as
Tokyo and Shanghai.

3.2. Urban land classification

As noted earlier, we obtained the NUACI thresholds at the ‘threshold
sites’ of each urban ecoregion. Using the year 2000 as an example,
Fig. 6 shows the relationships between the overall error (Q+ A) and
the varying NUACI thresholds in each of the urban ecoregions. The
histograms of the NDVI, NDBI and NDWI components for regions #1,
#6, #11 and #13 are aggregative, implying that the urban land pixels
of these four regions are the most homogeneous. In contrast, in the
regions of #7, #14 and #15, for example, the threshold curves inherit
no steep troughs since the histograms of these regions are relatively
dispersive. Table 2 suggests that the calibrated thresholds vary from

Fig. 4. The statistical distributions of the urban land sample with respect to NDWI, NDVI and NDBI, taking the results pertaining to 2000 as an example. The number shown on the left
corresponds to the index of the urban ecoregion in Fig. 2(a).
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0.53 to 0.87, reflecting the heterogeneous geographical conditions of
different urban ecoregions. The thresholds in the urban ecoregions #3
and #13 are the largest (0.87 and 0.80, respectively), whereas those in
the urban ecoregions #9 and #14 are the smallest (0.57 and 0.53, re-
spectively). The differences for the other urban ecoregions are rela-
tively small (between 0.61 and 0.76).

Fig. 7 shows the urban land classifications for the representative
cities in the year 2000. The results not only show the continuous ur-
banized areas but also successfully include the small, scattered settle-
ments surrounded by different land cover types such as bare soil,
shrubland, harvested farmland and desert, which are easily confused
with urban land.

Some limitations of the proposed approach can also be found ac-
cording to these results. For example, the water surfaces around
Moscow are misclassified as urban land. Similar errors are also found in
the results for Nanjing, where some aquaculture land along the Yangtze
River is misclassified as urban land. These errors are probably caused
by inadequate NUACI threshold values for segmentation. Refinements
for the NUACI thresholds are required to further improve the results for
these situations. Additionally, the proposed approach is not robust to
mountain shadows. This limitation is clearly revealed in the results for
Monterrey, in which mountain shadows cause some classification

errors.

3.3. Validation and comparison

Table A1 in the appendix provides the full validation statistics (in-
cluding overall accuracy, producer's accuracy, user's accuracy, Kappa,
and the 95% confidence intervals) of our mapping results. Both the
producer's and user's accuracies are large (over 0.80 or even up to 0.95)
for the non-urban type. For urban land, however, the global producer's
accuracy increases from 0.50 in 1990 to 0.60 in 2010, while the global
user's accuracy also increases from 0.49 in 1990 to 0.61 in 2010.
Smaller producer's accuracy and user's accuracy (0.2–0.4) for urban
land are found in several urban ecoregions, such as #3, #5, #8, #10
and #11, for the years 1990, 1995 and 2000. Therefore, major omission
errors and commission errors exist in these urban ecoregions. The
producer's accuracies for urban land in urban ecoregions #13 and #14
are also relatively small (< 0.4) in the years 1990 and 1995, implying
that a larger number of urban pixels in these regions are misclassified as
non-urban type.

The global Kappa values for the mapping results are 0.43 (1990),
0.43 (1995), 0.48 (2000), 0.49 (2005) and 0.50 (2010). Urban ecor-
egions #6, #9 and #12 have the greatest Kappa values (> 0.60),

Fig. 4. (continued)

X. Liu et al. Remote Sensing of Environment 209 (2018) 227–239

233



whereas #11 and #13 have relatively small Kappa values of approxi-
mately or< 0.20. The other urban ecoregions have Kappa values ran-
ging from 0.30 to 0.50. These results indicate that our urban land
classifications in most of the urban ecoregions have fair (0.21–0.40)
and moderate agreement (0.41–0.60) with the reference data according
to the guidelines suggested by Viera and Garrett (2005).

We also compared our results in the year 2000 with GlobeLand30
(2000), MODIS500m (circa 2001–2002), GLC2000 (2000), GRUMP
(1995) and IMPSA (2000−2001). Fig. 8 shows the comparisons in six
representative cities. These cities range from mega cities (e.g., New
York and Guangzhou), middle-size cities (e.g., Guadalajara) to small

cities (e.g., Haifeng). When visually compared with the referenced
Landsat image, our mapping results and GlobeLand30 demonstrate the
accurate representation of urban land with the finest spatial details.
MODIS500m also provides a good delineation of urban land, albeit less
detailed due to the coarse spatial resolution of 500m. The urban land
products of GLC2000, GRUMP and IMPSA exhibit unstable quality in
the selected cities. GLC2000 tends to overestimate the distribution of
urban land in Lublin, where the urban land mixed with the other non-
urban land types is depicted as a continuous urbanized area. For cities
such as São Paulo, GLC2000 dramatically underestimates the extent of
urban land. Moreover, GLC2000 have more serious omission errors for

Fig. 5. The generated multi-temporal NUACI images in the representative cities.

Fig. 6. The relationships between the overall error (Q+A) and the varying NUACI thresholds (based on the 2000 data).
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the cities of Adana, Guangzhou and Haifeng. GRUMP and IMPSA show
similar drawbacks, i.e., over- or under-estimation of urban land.
GRUMP completely misrepresents the urban areas in most of the se-
lected cities except for New York and São Paulo, while IMPSA mainly
omits the urban land at the outskirts of the selected cities.

Cohen's Kappa was also computed for the selected global urban land
products based on the 300 6-km reference data blocks for the year
2000. The full results can be found in Table A2 in the appendix. Our
results and GlobeLand30 have the greatest Kappa at both regional and
global levels. The Kappa values for our results are relatively larger than
those for GlobeLand30 in six urban ecoregions (#1, #2, #4, #7, #9 and
#12) but are smaller in the urban ecoregions of #3, #8, #10, #11, #13,
#14 and #15. At the global level, however, the average Kappa value for
our results (0.48) is larger than that of GlobeLand30 (0.4309).
Compared with the MODIS500m data (0.43), our results have larger
Kappa values in most urban ecoregions except for #3, #5, #10, #11,
#13 and #14. The comparison of Kappa values also reveals that our
approach outperforms the other urban land products of GLC2000
(0.30), GRUMP (0.21) and IMPSA (0.38).

Next, we compared the areas of urban land estimated by the se-
lected global urban land products (x-axis), including ours, against those
obtained from the 300 reference data blocks (y-axis). It is assumed that
more accurate mapping results are those with smaller root mean square
errors (RMSE) and larger R2 values. Fig. 9 shows that our mapping

results fit tightly to the 1:1 line (R2= 0.88; slope=0.99). The slope
values for almost all the urban land products are< 1.0, indicating an
overestimation of the urban land area. In particular, the GRUMP data
are the least accurate due to the most serious overestimation, reflected
by the small slope value of 0.34 (R2= 0.35).

Furthermore, we evaluated the quality of our urban land classifi-
cations by comparing them with two regional-scale, multi-temporal
land cover datasets covering the countries of China and the U.S. We
used these two datasets as the reference data for 1990, 1995 (only
available in China's data), 2000, 2005 and 2010. Next, we randomly
selected 25 cities from China and the U.S., respectively, as the eva-
luation sites (Fig. 10).

In China's 25 selected cities, our classifications yield mean Kappa
values of 0.23 (1990), 0.32 (1995), 0.32 (2000), 0.36 (2005) and 0.42
(2010), while in the U.S., mean Kappa values in the selected cities are
0.36 (1990), 0.41 (2000), 0.43 (2005) and 0.46 (2010). For China, our
classification produces large Kappa values for cities such as Beijing,
Shenzhen, Qiqihaer and Longyan. However, the Kappa values vary over
time for Huzhou, Zhoukou and Dali. For the U.S. cities, large Kappa
values (> 0.60) were noted for Cleveland, Oxnard and Sarasota,
whereas the Kappa values decline in cities such as Las Vegas and Des
Moines. Overall, the Kappa values for our urban land classifications are
between 0.43 and 0.50 at the global level and ~0.33 (China: [0.23,
0.42]; 1990–2010) and ~0.42 (U·S: [0.36, 0.46]; 1990–2010) at the
country level.

The presented mapping results also have several limitations. There
are missing data in the mapping results for the 1990s due to either the
lack of Landsat images in part of the world (e.g., Russia) or the shortage
of high-resolution images for obtaining reference data. These problems
impair the completeness and quality of the presented data product. The
binary mask also needs improvement, because the nighttime lights data
may not effectively detect artificial infrastructure such as interstate
highways and paved settlements that are usually not lit up in the night.
Moreover, the accuracies of our classifications are relatively small in
tropical areas and arid areas. The binary urban and non-urban classi-
fication is also a simplification of reality and cannot effectively address
the mixed pixels problem of Landsat images in suburban regions. The

Table 2
The NUACI thresholds and their classification errors in the year 2000.

Urban Ecoregion 1 2 3 4 5 6 7 8

Optimal threshold 0.67 0.72 0.87 0.74 0.76 0.76 0.63 0.65
Q+A (calibrating) 0.22 0.23 0.16 0.26 0.31 0.07 0.04 0.17
Q+A (testing) 0.28 0.16 0.16 0.25 0.29 0.16 0.05 0.16

9 10 11 12 13 14 15
Optimal threshold 0.57 0.61 0.70 0.68 0.80 0.53 0.72
Q+A (calibrating) 0.15 0.07 0.24 0.20 0.15 0.08 0.11
Q+A (testing) 0.17 0.09 0.09 0.14 0.21 0.15 0.11

Fig. 7. Urban land classifications for the representative cities in the year 2000.
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development of sub-pixel classification methods is a feasible approach
to address this problem.

On the other hand, the reference dataset produced by manual in-
terpretation is not error-free (Foody et al., 2016). The imperfections in
the sample size, mislabeling objects and mixed pixels may induce un-
certainties in the classification accuracies assessment and area estima-
tion (Foody, 2009, 2010, 2013). Nevertheless, manual interpretation is
a feasible method to produce the reference data regarding the budget's
condition and precision considerations. We have also released our re-
ference dataset and users can access it through the link: http://www.
geosimulation.cn/GlobalUrbanLand.html.

3.4. Assessment of global urban land expansion from 1990 to 2010

The presented new multi-temporal global urban land data facilitate
the characterization of global urban land expansion from 1990 to 2010.
Fig. 11 shows the extent and expansion of urban land in several re-
presentative cities around the world. Table 3 shows estimated global
urban land areas with their 95% confidence intervals from 1990 to
2010. By analyzing these data, we found that the world's urban land
area increased to 747.05 ± 1.50 thousand km2 during the past two

decades. The global coverage of urban land changed from 0.46% in
1990 to 0.63% in 2010 (excluding Antarctica and Greenland). These
results are close to those reported in some previous studies, such as
Gong et al. (2013) (0.66%), Zhou et al. (2015) (0.50%) and Liu et al.
(2014) (0.45%). Table 4 summarizes the world's 10 countries with the
most rapid urban land expansion. In total, these 10 countries con-
tributed 57.61% of the world's total increase of urban land area from
1990 to 2010. In particular, China (21.49%), the United States
(14.21%) and India (7.30%) together (14% of the world's terrestrial
area in total) already contribute almost 43% of the world's total ex-
pansion. Overall, these are the results for a preliminary analysis of
global urban land expansion using our multi-temporal global urban
land data. These data can also be applied to other urban research, such
as the projection of future urban growth at regional and global scales
(Chen et al., 2014; Gao and Bryan, 2017; Li et al., 2017; Liu et al.,
2017).

4. Conclusions

In this paper, we presented the production of a new dataset of multi-
temporal 30-m global urban land maps. The estimated global level

Fig. 8. Comparing the urban land classifications obtained by NAUCI-based classifications and other contemporary products.
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Fig. 9. Scatter graphs of the 300 reference data blocks, in which each graph shows the relationship between the estimated urban land areas in each data product and those obtained from
the reference data blocks. The broken line is the 1:1 line, while the solid line represents the fit line.

Fig. 10. Kappa values over time using the data from China's Land-use Database and the National Land Cover Database of the U.S.
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overall accuracy, producer's accuracy and user's accuracy for this da-
taset are 0.81–0.84, 0.50–0.60 and 0.49–0.61, respectively. The Kappa
values are 0.43–0.50 at the global level, and ~0.33 (in China) and

~0.42 (in the U.S.) at the country level. By analyzing this dataset, we
found that the world's total urban land area increased from
450.97 ± 1.18 thousand km2 in 1990 to 747.05 ± 1.50 thousand km2

in 2010. The world's three countries with the greatest rates for urban
land expansion, namely, the United States, China and India (14% of the
world's terrestrial area in total), contributed almost 43% of the total
urban land area increase. In 2010, the global coverage of urban land
has reached approximately 0.63%. The presented global urban land
maps can be accessed through the webpage: http://www.
geosimulation.cn/GlobalUrbanLand.html. Researchers from all around
the world are encouraged to use and evaluate this new 30-m resolution
dataset. Our future efforts will be devoted to the continuous update and
refinement of this dataset.
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